

Copyright Holder:Copyright Holder: This Article is Licensed Under:

© Liu, Witt. (2025)© Authors’ Name. (Year)

Corresponding author’s email: shykull@gmail.com Corresponding author’s email: xxx@xxx.

Advanced Journal of STEM Education, Vol. 3 No. 2 (2025) https://doi.org/10.31098/ajosed.v3i2.3578

Instructional Innovation in STEM: Using the ASSURE Model for Video-
based programming instruction in Engineering

Llewellyn Wee Ling Liu *1 , Dorothy DeWitt *2

1 Open University Malaysia, Malaysia

2 Universiti Malaysia, Malaysia

Received : July 30, 2025 Revised : September 9, 2025 Accepted : September 9, 2025 Online : November 30, 2025

Abstract

The increasing demand for programming skills among engineering students has highlighted the need for more
engaging and effective instructional methods. This study explores the use of the ASSURE instructional design
model to develop video-based programming instruction tailored for undergraduate engineering students. By
aligning technological tools with pedagogical strategies, the ASSURE model provides a structured yet flexible
framework for integrating multimedia into STEM education. The study outlines the design process,
implementation, and evaluation of a video-based module for teaching VHDL (VHSIC Hardware Description
Language) programming. Using the USE Usability Framework, the findings from the pilot implementation
indicate positive feedback on the learning experience. The study concludes with practical implications for
engineering educators and recommendations for future instructional design in technology-enhanced STEM
education.

Keywords ASSURE Model; Video-based programming instruction, STEM Engineering

INTRODUCTION

Engineering education is undergoing a significant transformation as the demand for

computational proficiency becomes increasingly central to professional practice. In today’s data-

driven and automation-rich engineering landscape, programming has emerged as a fundamental

skill alongside traditional technical competencies. Engineers are expected not only to understand

theoretical concepts but also to translate these into executable solutions using programming

languages such as Python, C++, and MATLAB (Panesar, 2017; Aubel et al., 2024; Nandi et al., 2024).

These skills are essential for tasks ranging from data analysis and system modelling to control

automation and simulation (Karim et al., 2021). Consequently, programming is now embedded in

the curriculum of most engineering programs globally, highlighting its critical role in preparing

students for contemporary challenges in STEM fields (Aboelela, 2021).

Despite the importance of programming, many engineering students face considerable

difficulties when learning to code. Research has consistently shown that students struggle with

abstract thinking, algorithmic logic, and syntax-related issues in early programming courses

(Watson & Li, 2014; Lahtinen, Ala-Mutka, & Järvinen, 2005). These difficulties are further

compounded by cognitive overload and anxiety, particularly among students with limited prior

exposure to computing (Kinnunen & Malmi, 2006). The rigid structure of conventional lecture-

based delivery often fails to provide the individualized support needed to overcome these

challenges. Moreover, passive learning environments limit opportunities for students to interact

with content in ways that reinforce understanding or allow for immediate feedback (Gomes &

Mendes, 2007).

To address these issues, there is a growing shift toward adopting technology-enhanced

instructional approaches in engineering education. One such approach is video-based instruction,

which has demonstrated potential in improving learning outcomes, engagement, and learner

autonomy in programming education (Brame, 2016; Kay, 2012). Videos can break down complex

programming concepts into digestible segments, use visuals and real-time demonstrations to

 Research Paper

mailto:shykull@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.31098/ajosed.v3i2.3578
https://orcid.org/0009-0006-5405-9499
https://orcid.org/0000-0003-3123-7150
https://crossmark.crossref.org/dialog/?doi=10.31098/ajosed.v3i2.3578&domain=pdf

Adv. J. STEM. Ed

24

reinforce learning, and allow students to learn at their own pace. This flexibility is especially

valuable in accommodating diverse learning preferences and enabling repeated exposure to

difficult content (Guo, Kim, & Rubin, 2014). In addition, video instruction supports flipped

classroom models, where classroom time can be reserved for active problem-solving and higher-

order learning activities.

While video-based instruction offers promising advantages, its effectiveness largely depends

on how it is integrated into the learning design. Merely presenting content through video does not

guarantee improved learning; rather, the pedagogical framework guiding its implementation plays

a crucial role (Mayer, 2023; Eliana et al., 2024). In this context, the ASSURE instructional design

model provides a systematic, learner-centered approach for integrating media and technology into

education. Originally developed to help instructors plan and deliver instruction using various

technologies, ASSURE emphasises alignment between learner analysis, learning objectives,

instructional methods, and media selection (Heinich et al., 2002; Eliana et al., 2024). Its adaptability

makes it especially suitable for designing video-based instruction that aligns with engineering

students’ learning needs.

This paper presents an instructional innovation that applies the ASSURE model to design and

implement a video-based programming module tailored for undergraduate engineering programs.

This study investigates undergraduate engineering students enrolled at the Malaysian branch

campus of an Australian university. The study aims to demonstrate how a structured instructional

design model can support the meaningful integration of video technology into programming

instruction. By focusing on the interplay between pedagogy and media, the paper contributes to

current discourse on improving programming education in STEM and offers practical insights for

engineering educators seeking to adopt video-based strategies in their curriculum.

LITERATURE REVIEW

Engineering Education in the Context of STEM and Industry 4.0

Engineering education is evolving rapidly in response to the growing complexity of

challenges posed by the Fourth Industrial Revolution (Industry 4.0). At the heart of this

transformation lies the demand for STEM graduates who can demonstrate not only technical

proficiency but also critical thinking, computational literacy, and the ability to analyze and solve

real-world problems using data-driven approaches (Dallasega, Rauch, & Linder, 2018; Nandi et al.,

2024). Industry 4.0 technologies—such as automation, cyber-physical systems, and artificial

intelligence are reshaping engineering tasks, making data analysis and programming indispensable

skills for engineers (Aubel et al., 2024; Pereira & Romero, 2017; Acatech, 2016).

Programming languages, particularly Python, MATLAB, and R, are foundational in enabling

engineers to interact with large datasets, model systems, automate processes, and develop predictive

tools (Karim et al., 2021). According to Aboelela (2021), proficiency in programming equips engineers

with the cognitive tools necessary to transition from theoretical understanding to real-world problem-

solving, especially in automation, machine learning, and smart manufacturing domains. Consequently,

engineering curricula globally have integrated programming courses at early stages to prepare students

for the digital workplace (García-Peñalvo et al., 2018; Hart & Elliott, 2021).

Learning Challenges in Programming for Engineering Students

Despite the recognized importance of programming, it remains a challenging subject for

many engineering students. Studies have shown that students encounter conceptual, syntactical,

and psychological barriers, including difficulty in algorithmic thinking, debugging, and maintaining

motivation (Lahtinen, Ala-Mutka, & Järvinen, 2005; Kinnunen & Malmi, 2006; Hart & Elliott, 2021).

The abstract nature of programming concepts, when delivered through conventional lecture-based

Adv. J. STEM. Ed

25

formats, often fails to resonate with learners, particularly novices with no prior computing

background (Watson & Li, 2014).

Traditional pedagogy in programming education tends to focus on syntax and code structure

without sufficient attention to visual representation, real-time problem solving, or scaffolding—

leading to a high rate of student disengagement and dropout (Gomes & Mendes, 2007). Research

by Robins (2010) emphasized that learning to program is not only a technical endeavor but also a

cognitive and psychological challenge requiring iterative exposure and contextual application. As

such, there is a pressing need to explore pedagogical innovations that respond to the diverse

learning preferences and cognitive needs of today’s engineering students.

Cognitive Theory of Multimedia Learning (CTML)

Mayer (2023) defined multimedia as “presenting both words (such as spoken text or printed

text) and pictures (such as illustrations, photos, animation, or video).” For the scope of this research

study, multimedia was defined as a combination of text, audio, animation, video, still images and

interactive content, which refers to different signs and signals. Mayer (2023) formed the Cognitive

Theory of Multimedia Learning (CTML), which comprises three assumptions:

1. The working memory is made up of a dual-modality input channel system;

2. The working memory has a limited capacity, and

3. Learners engage actively in processing learning materials.

Moreover, CTML assumes that each channel has a certain capacity for information processing

in the working memory, whereas verbal and visual channels can each only process a certain amount

of information at one time (Mayer, 2023). Lastly, learners engage in active processing, which

includes paying attention to features, creating links with prior knowledge and organising new

information in order to transfer it into long-term memory. Active processing is an important aspect

of effective learning, as learners need to engage with the information in order to understand and

retain it. This involves paying attention to the features of the information being presented, such as

identifying key concepts, relationships, and patterns.

Additionally, learners must create links with their prior knowledge and experiences, which

can help to contextualize and make sense of the new information. This process of relating new

information to existing knowledge structures not only facilitates learning but also enhances the

likelihood of long-term retention.

Finally, learners must also engage in the process of organizing new information, such as

grouping related ideas or breaking down complex concepts into smaller, more manageable parts.

By doing so, learners are able to better understand and process the information, leading to more

effective transfer into their long-term memory (Mayer, 2023).

Based on the assumptions, Clark and Mayer (2016) summarised the CTML and developed

seven multimedia design principles, five of which are applicable in the design of video-based

programming instruction:

1. Multiple Representation Principle: Learners learn more deeply from a combination of words

and pictures than from words alone.

2. Contiguity Principle: When giving a multimedia explanation, words should be located near the

corresponding pictures, rather than farther away from them.

3. Split-Attention Principle: Learners learn more deeply when the text is presented with auditory

narration rather than written text.

4. Coherence Principle: When giving a multimedia explanation, a damaging effect on learning

occurs if interesting but irrelevant words and pictures are added to the learning materials.

5. Personalisation Principle: Students learn better by hearing text in an informal, conversational

style compared with a formal style.

Adv. J. STEM. Ed

26

According to Mayer (2023), these principles make effective use of educational technology in

teaching and learning. The better these principles are understood, the better the chances of

developing successful multimedia instructions that meet students’ expectations.

Advantages and Limitations of Video-Based Instruction in Programming Education

In response to the limitations of conventional approaches, video-based instruction has

gained attention as an effective alternative for teaching programming. Videos can break down

complex concepts using visual aids, real-time demonstrations, and animation to enhance

understanding and retention (Brame, 2016). Studies have shown that students appreciate the

flexibility and autonomy offered by videos, including the ability to pause, rewind, and rewatch

content, which facilitates self-paced learning (Kay, 2012; Guo, Kim, & Rubin, 2014).

For instance, research by Stöhr, Demazière, and Adawi (2019) found that video-based flipped

classrooms significantly improved engagement and academic performance in an introductory

programming course. Similarly, Fiorella and Mayer (2018) and Mayer (2023) highlighted that well-

designed instructional videos can enhance learning outcomes, especially when integrated with

active learning strategies such as embedded quizzes and code-along exercises.

However, not all video-based approaches yield successful outcomes. A number of studies

have reported that videos alone, when not grounded in sound instructional design, may lead to

superficial learning, cognitive overload, or reduced interactivity (Ibrahim et al., 2012; Chen & Wu,

2015). In particular, students may struggle to engage with videos that are too long, lack clear

structure, or fail to align with learning objectives. These mixed results suggest that the mere

inclusion of video content is not sufficient; effective integration requires careful pedagogical

planning and learner-centered design principles.

ASSURE Model for Systematic Instructional Design

To ensure effective integration of video into instructional settings, the use of structured

instructional design models has been recommended. The ASSURE model, developed by Heinich et

al. (2002), offers a systematic approach to instructional planning that is particularly well-suited for

technology-enhanced learning. The model comprises six components: Analyze Learners, State

Objectives, Select Methods and Media, Utilize Materials, Require Learner Participation, and

Evaluate and Revise (Eliana et al., 2024). This model facilitates alignment between pedagogical

goals, learner needs, and media selection, promoting a cohesive and intentional learning

experience.

Figure 1. The ASSURE Model of Instructional Design by Batir and Sadi (2021)

Stage 1:
Analyze
learners

Stage 2:
State

objectives

Stage 3:

Select
media and
materials

Stage 4:

Utilize
media and
materials

Stage 5:

Require
learner

participatio
n

Stage 6:

Evaluate
and revise

Adv. J. STEM. Ed

27

The ASSURE model has been applied successfully in various disciplines, including science and

technology education, to design interactive and multimedia-rich instructional content (Smaldino et

al., 2015; Eliana et al., 2024). By emphasizing learner analysis and active engagement, it addresses

many of the pitfalls observed in poorly structured video instruction. For example, studies by Alessi

& Trollip (2011) and Alkhattabi (2020) demonstrate how the ASSURE model can enhance

multimedia-based instruction by scaffolding content and encouraging participation through

formative assessment and feedback mechanisms.

In the context of programming education, the ASSURE model provides a valuable framework to

design video-based instruction that is not only engaging but also pedagogically sound (Hart & Elliott,

2021). It allows instructors to integrate video content in a way that is responsive to learner needs,

cognitive load considerations, and curriculum outcomes. This paper builds on these insights by applying

the ASSURE model to develop a video-based programming module for engineering students, aiming to

improve engagement and learning outcomes through structured instructional innovation.

RESEARCH METHOD

This study employed a design-based research (DBR) approach to develop and evaluate a

video-based instructional module for teaching programming to engineering students using the

ASSURE instructional design model (Heinich et al., 2002; Eliana et al., 2024). DBR is appropriate for

educational technology research as it facilitates iterative development and refinement of

instructional interventions in real-world settings (Wang & Hannafin, 2005). The ASSURE model

served as the guiding framework for the instructional design process, providing a systematic

method to align learning objectives, learner needs, and media selection.

Overview of the ASSURE Model Application

The ASSURE model consists of six stages, namely, Analyze Learners; State Objectives; Select

Methods, Media, and Materials; Utilize Media and Materials; Require Learner Participation;

Evaluate and Revise.

Each step was operationalized in the development of a video-based programming module

targeting first-year engineering students enrolled in an introductory Python programming course.

Step 1: Analyze Learners

During this phase, the learner's skills, pre-existing knowledge, attitudes, age, grade, and

learning styles are assessed (Batir & Sadi, 2021) with the objective of identifying and understanding

their unique characteristics.

The participants in this study are homogeneous in age, being first-year university students

in their early 20s. Since the survey is carried out with students attending a private university, it is

assumed that their socio-economic levels (i.e.: parent’s education level and income) were classified

as medium/high by the researcher. The participants comprised a diverse mix of local (Malaysian)

and international students from countries such as Bangladesh, Indonesia, Sri Lanka, and Pakistan.

Most participants are local students, with a ratio of 7:1 compared to international students.

Regarding their background knowledge, it is assumed that the participants possess a similar

understanding of advanced mathematics and physics and are new to programming in an

engineering program. As first-year engineering students, they may not have prior knowledge of any

programming language. They may not have had experience using the VHDL programming language,

as it is not a standard programming language, unlike HTML and XML for developing websites. Since

the participants are considered adult learners, it is also assumed that the student cohorts entering

an engineering program should have successfully met the entry requirement from their high school

results. It is also observable that each participant has his or her personal computer and internet

access. It is appropriate for programming to be taught online, as required by integrating educational

Adv. J. STEM. Ed

28

technologies based on the ASSURE model (Eliana et al., 2024).

Step 2: State Objectives

At this stage, the learning objectives of the designed subject are presented. The research

focuses on first-year engineering, which is a common and fundamental subject for all engineering

students at the university. The compulsory unit is Digital Electronics Design, and one of the topics

is VHDL (VHSIC Hardware Description Language programming).

VHDL is a programming language used to model, simulate, and synthesize digital circuits and

systems. It was initially developed in the 1980s by the U.S. Department of Defense as part of the

Very High-Speed Integrated Circuit (VHSIC) program, which aimed to improve the design of

complex electronic systems (Bhasker, 1999).

The objectives of this unit are to expose students to techniques and design methodology in

Integrated Circuits. Students will develop skills in Modelling, Simulation, Verification, Testing and

Implementation using industry-standard Electronic Design Automation (EDA) tools.

VHDL is widely used in the design of digital systems, including microprocessors, FPGAs

(Field-Programmable Gate Arrays), ASICs (Application-Specific Integrated Circuits), and other

complex electronic systems (Floyd & Katz, 2015). It is supported by various software tools,

including simulators, synthesis tools, and integrated development environments (IDEs), making it

easier to design, simulate, and implement digital circuits and systems.

Step 3: Select Methods, Media, and Materials.

In this stage, there is a meticulous selection process aimed at choosing the most appropriate

methods and educational materials to effectively attain the specified objectives. In this study, the

video materials used represent the programming coding content in the form of both audio and

video.

There were 12 videos with 6 to 10 minutes duration, explaining key concepts with code

demonstrations by the researcher (refer to Figure 2). This approach capitalizes on the strengths of

both auditory and visual learning, which is effective in enhancing learning outcomes. Furthermore,

the video materials used in this study have been designed to be interactive, which allows learners

to engage with the material actively and reinforces their understanding of the programming

concepts being taught. The design method combined direct instruction, guided practice, and self-

paced learning, allowing flexibility while ensuring alignment with the course syllabus.

Figure 2. Screenshot of a recorded video to demonstrate the Altera DE1 board with VHDL coding

Adv. J. STEM. Ed

29

Step 4: Utilize Media and Materials

First, pre-recorded videos were designed using screen recording and visual annotation tools

(e.g. OBS Studio). Each video was aligned with specific learning objectives and scripted for clarity

and coherence. Next, the videos were developed referring to the instructor guides, outlining weekly

video topics, suggested pacing, embedded activity instructions, and discussion prompts.

The deployment of media was carefully sequenced to facilitate cognitive scaffolding and

reduce information overload. Learning modules were structured to gradually increase in

complexity, beginning with basic syntax and progressing to logical structures and problem-solving

techniques for VHDL programming.

Lastly, the videos and materials were uploaded into the university’s Learning Management

System (LMS) in a modular format. Each weekly module includes a short introductory video

outlining the learning goals and the weekly videos.

Step 5: Require Learner Participation

In pursuit of this study's objectives, an instructional guide for teaching Chapter 1 –

Introduction to VHDL was developed. This guide provides detailed explanations for each stage and

includes various resources. To facilitate student progression through the LMS, a standardized

sequence of instructions was implemented for each lesson. The prescribed sequence involves

students first accessing the LMS and proceeding through the lecture content, tutorial, and lab

activities, with a particular emphasis on utilising video instructions as essential learning support

and resources.

Throughout the course, students are consistently reminded to watch the video instruction

for every lecture and lesson. Table 1 shows an example of the instructor’s guide for lecturers in

teaching Chapter 1: Introduction to VHDL programming.

Table 1. Exemplar of Instructor’s guide for lecturer in teaching Chapter 1 – Introduction to VHDL

programming

Stages Instructions to students Resources

Introduction –

Learning

Objectives

Go through the Learning

Objectives in the LMS

Show students the

Synthesis vs Simulation

differences

Show VHDL Design

Paradigms

1. Show recorded video lecture on

Introduction to VHDL

2. External videos – Brief History of HDL

Tutorial

Activities

Allow students to attempt

exercises to understand

basic VHDL coding

Adv. J. STEM. Ed

30

Stages Instructions to students Resources

Lab Activities Allow students to attempt

lab exercises using the

Quartus II software for

VHDL coding

Step 6: Evaluate and Revise

Evaluation was conducted through pilot testing with a selected number of students to be

interviewed as feedback, using the USE Usability Framework (Lund, 2001), which is reported in the

findings. Feedback received was used to revise the video design to ensure the students’ learning

experience is enhanced.

To collect the feedback, a semi-structured interview was undertaken to capture the

participants’ reflections on learning with the video-based programming instructions. Using

purposive sampling, 12 volunteers were identified, and the framework analysis approach was

applied to analyze the interview data. Based on Ruslin et al. (2022), a framework analysis approach

is applied to analyse the interview data. All interviews were audio-recorded, transcribed verbatim,

and reviewed multiple times to ensure familiarity with the content. A codebook was developed

based on the four core dimensions of the USE framework:

• Usefulness: Participants’ reflections on the relevance and effectiveness of the videos in

supporting their learning outcomes (e.g., "It helped me understand the topic better").

• Ease of Use: Descriptions of the simplicity or intuitiveness of the video interface (e.g., "The

interface was simple").

• Ease of Learning: Participants’ experiences with how quickly and comfortably they adapted to

the video-based format (e.g., "It didn't take long to figure out").

• Satisfaction: Expressions of overall enjoyment, motivation, or preference toward the VIDEOS

(e.g., "I enjoyed using it").

In addition to mitigating the threat to external validity in the qualitative data, caution was taken

during data analysis to avoid making broad generalisations from the interview responses. Triangulation

with other data sources, including follow-up communication with participants to confirm or clarify their

responses, was employed to enhance the credibility and validity of the findings.

FINDINGS AND DISCUSSION

The findings of this study are based on the last stage of the ASSURE Model, which is the

evaluation and revision.

Table 2 shows that the participant profiles reveal a diverse background of students.

Additionally, the participants were each assigned a pseudonym that was available to the researcher

only, to ensure the anonymity of their interview responses.

Table 2. Participants’ Profile

Gender Age Engineering Major Current Semester

Female 19 Software Engineering Year 1 Sem 1

Male 19 Electrical and Electronics Year 1 Sem 1

Adv. J. STEM. Ed

31

Gender Age Engineering Major Current Semester

Male 20 Civil Engineering Year 2 Sem 1

Female 19 Software Engineering Year 1 Sem 1

Female 19 Software Engineering Year 1 Sem 1

Female 20 Civil Engineering Year 2 Sem 1

Male 19 Software Engineering Year 1 Sem 1

Male 20 Electrical and Electronics Year 1 Sem 2

Male 19 Software Engineering Year 1 Sem 1

Male 20 Software Engineering Year 1 Sem 2

Male 21 Mechanical Year 2 Sem 2

Male 19 Software Engineering Year 1 Sem 1

Results for Usefulness of Video

Participants generally reported positive experiences using the videos. They described the

videos as functional tools that facilitated understanding of programming concepts. Key

functionalities identified included clear audio explanations, visual demonstrations of coding

processes, and the ability to pause and replay video segments for better comprehension. Many

participants appreciated the visual appeal and the structured presentation of content, which helped

them grasp complex topics more effectively.

One participant noted, "The video content was useful and helped me understand the content better

than reading alone," highlighting the added value of multimedia in learning programming. Another

shared an example of how the video clarified a difficult concept that was previously confusing in text

form, enabling them to complete programming assignments with greater confidence.

These insights align with the reported high agreement among users that videos were useful

and helped in understanding content, supporting the effectiveness aspect of usability in online

learning environments. The result is in line with the Multimedia Principles listed in the framework

of Cognitive Theory of Multimedia Learning (CTML) by Clark and Mayer (2011), where a

combination of visuals, audio and words helped with the usefulness of the videos.

While many participants reported positive remarks on the usefulness of videos for

programming learning, some participants expressed that the videos did not always meet their

learning needs. A few mentioned that the content was too generic or lacked depth for more

advanced programming topics, limiting the video's usefulness for learners with prior knowledge.

One participant stated, "The video covered basics, but I needed more detailed explanations to fully

understand some concepts."

Some responses tended to show their preferences for learning programming outside of video

and prefer a faster approach, such as from books. In particular, they outlined their opinions of

videos as time-wasting, and some of the participants thought it would affect the time they needed

to learn programming, as commented, “I still think referring to the LMS [Learning Management

System] is better as it saves time. Searching for certain information in the video is a waste of time and

slower. I need to hit the forward button to look for a certain programming topic.” and “I think it is a

waste of time to sit in front of the computer and watch the video. I am somehow discouraged to follow

the video all throughout the semester”.

Additionally, some users felt that the videos sometimes moved too quickly, making it difficult

to keep up, especially for complex coding examples. This hindered their ability to fully benefit from

the videos. Comment includes “I have difficulty watching video as it moves too quick for me to read”

Overall, participants’ feedback reveals a dual perspective on video-based programming

instruction's usefulness, as its demonstrable usefulness in facilitating programming learning is

counterbalanced by significant frustrations stemming from inflexible pacing, insufficient depth for

Adv. J. STEM. Ed

32

advanced needs, and time-consuming navigation. This mixed feedback resonates with Lange &

Costley’s (2020) findings that videos created particularly regarding learner control over speed,

content level, and information access are critical factors determining their ultimate effectiveness

and user satisfaction.

Results for Ease of Use

To further delve into the experiences of using the videos, the participants were asked

questions about the ease of using the videos in learning programming. The participants found the

video interface intuitive and straightforward. They appreciated that videos opened and played

without technical issues, with clear sound quality that made following along easier. The navigation

controls were described as user-friendly, allowing learners to control playback smoothly.

Participants elaborated on the benefits of the VIDEOS format, such as the ability to learn at

their own pace and revisit difficult sections. One participant explained, "I liked that I could pause

and rewind the video whenever I needed to, which made learning less stressful." This ease of

navigation and control contributed to a positive user experience and reduced frustration.

The overall interface design was praised for its simplicity and consistency, which helped

users focus on learning. These findings correspond with the ease of use dimension of the USE

framework, emphasizing operational suitability and user-friendly design.

On the other hand, certain participants reported technical difficulties, such as buffering issues or

poor video resolution, which disrupted their learning flow. Others found the interface lacking in features

that could enhance usability, such as searchable transcripts or interactive elements. One participant

commented, "I struggled with the video player controls; it was hard to find specific parts I wanted to

review." This lack of advanced navigation options detracted from the ease of use.

This positive learning experience illustrates the learnability aspect of the USE framework

(Lund, 2001), where the instructional videos facilitated comprehension and skill acquisition

effectively. Furthermore, the feedback from the participants captures how video-based

programming instruction’s dual-channel delivery with visual and auditory bridged learning gaps,

which suggests learning retention, as mentioned by Mayer (2023).

Results of Ease of Learning

Most participants agreed that the videos significantly supported their learning of

programming. For many, this was their first experience using VIDEOS as a primary learning tool for

programming. Initial reactions ranged from curiosity to slight apprehension, but these feelings

generally shifted to satisfaction as they engaged with the content.

Participants highlighted that the combination of visual and auditory information reinforced

their understanding and retention of programming concepts. One participant remarked, "Seeing the

code in action while hearing the explanation made it easier to grasp than just reading a textbook."

Another commented, "The lecturer broke things down in a way that just clicked for me in the video. I

finally understood concepts that confused me before."

This positive learning experience illustrates the learnability aspect of the USE framework,

where the instructional videos facilitated comprehension and skill acquisition effectively.

However, a few learners indicated that the videos did not cater well to different learning

styles. For example, participants who preferred textual or hands-on learning found the video format

less effective. One participant noted, "I learn better by doing exercises rather than watching videos,

so it was less helpful for me."

The high satisfaction reported by the participants reflects the Cognitive Load Theory by

Chandler and Sweller (1991), which reflects the well-designed visuals and audio in the video-based

programming instruction, that managed intrinsic load and freed the participants’ cognitive

Adv. J. STEM. Ed

33

resources for learning programming.

Results of User Satisfaction

User satisfaction with the videos was high. Participants expressed contentment with the overall

learning experience, citing the videos' clarity, relevance, and engaging presentation as major

contributors to their satisfaction.

One participant elaborated, "I felt satisfied because the videos made learning programming

less intimidating and more accessible.". Another remarked, “I am excited to learn programming

through the video. It is something different from just the traditional teaching of using books or PPT

slides.” The feeling of accomplishment after understanding difficult material through the videos was

a recurring theme.

Nevertheless, user satisfaction was diminished for those who encountered the above issues.

Some participants expressed frustration due to the lack of interactivity or feedback mechanisms

within the videos, which made the learning experience feel passive and less engaging. A participant

shared, "I was not satisfied because I couldn't ask questions or get immediate help when I was stuck."

This highlights a gap in user engagement and support that affected overall satisfaction.

This result suggests that some participants seem to prefer learning in a social environment,

which is connected to Vygotsky (1978) constructivist principles. The Constructivist principles

assert that knowledge is actively constructed through social mediation and problem-solving tools.

With that, the use of video-based programming instruction is a non-interactive format that inhibits

learners’ ability to engage in dialogue and find it difficult to contextualise programming when

unable to seek clarification from the social learning environment.

CONCLUSIONS

The study explored learners’ perceptions of video-based programming instruction as a tool

for learning programming concepts through Lund (2001)’s USE Usability Framework, which

evaluates the videos based on Usefulness, Ease of Use, Ease of Learning and Satisfaction. Overall,

the findings indicate a positive reception towards the videos among the participants. These findings

collectively show that while video-based programming instruction is a potent tool for scaffolding

programming concepts, its effectiveness is contingent on addressing critical gaps in learner control,

adaptability, and interactivity.

Usefulness

Firstly, the majority of participants perceived videos as a useful tool that enhanced their

understanding of complex programming concepts. This aligns with the “Usefulness” dimension of

the USE framework, which assesses whether the video helps users achieve their goals effectively.

Learners reported that videos supported memory retention and reduced cognitive load, confirming

prior research that video-based approaches can facilitate learning in abstract domains (Huang et

al., 2020). This suggests that videos can serve as an effective supplement to traditional instruction

by making challenging content more accessible and comprehensible, especially in the context of

learning programming among engineering students. Moreover, the findings also validate Mayer

(2023) CTML’s principle that dual-channel processing enhances learning.

However, the findings noted the videos lacked granularity for accessibility and content

inflexibility, which is consistent with Lange & Costley’s (2020) finding that this inflexibility creates

tension among learners. This highlights the need to rethink designing videos with “one size-fits-all”

content and approach, as they risk compromising the capability of learning engineering students in

learning programming.

Adv. J. STEM. Ed

34

Ease of Use

Secondly, the participants praised videos ’s intuitive functionality, such as play, pause and

rewind functions, for enabling self-paced review, thus reducing cognitive stress during learning.

Conversely, while most participants found the videos platform straightforward to navigate, several

usability issues were raised, particularly concerning navigation controls and video functionality.

These concerns relate directly to the “Ease of Use” dimension, which measures how effortless it is

for users to interact with videos. Difficulties in efficiently accessing or controlling video content can

hinder the learning experience and reduce the perceived value of videos (Guo et al., 2014; Dipon &

Dio, 2024). Addressing these usability barriers is critical to ensuring learners can focus on content

rather than struggling with the interface.

Ease of Learning

The videos reinforcement on visual and audio boosted the learning experience, which

resonates with Paivio (1990) dual-coding theory, where dual-modality inputs strengthen memory

retention. However, Mayer (2023) warned about proper designing of the videos to avoid

overloading of words and audio which could cause high cognitive load among the learners.

Some participants expressed that learning to use the video-based programming instruction

required an initial time investment, which they perceived as a drawback compared to conventional

instruction. This reflects the “Ease of Learning” dimension, which evaluates how quickly users can

become proficient with the system. Consistent with Lund (2001) framework, if learners find the

video difficult to learn, their overall satisfaction and continued use may decline. Streamlining the

onboarding process and providing intuitive design features can mitigate these challenges and

promote smoother adoption. While the study affirms the pedagogical potential of video-based

programming instruction in supporting programming learning, it also highlights the need to

address usability issues and learners’ time-related concerns to fully realise its benefits.

Nevertheless, some learners with a different preference for textual and audio modalities

perceived video-based programming instruction as lacking active engagement and practical

application, expressing a stronger inclination toward hands-on learning activities. This divergence

in perception aligns with Kolb (1984) experiential learning theory, suggesting that the design of

video-based programming instruction inherently supports assimilative learning styles more

effectively than convergent ones.

Satisfaction

Participants generally expressed positive satisfaction with video-based programming

instruction, describing it as engaging and motivating, echoing the Cognitive Load Model. Many

highlighted the novelty and interactivity of the video format, which increased their enthusiasm for

learning programming. This corresponds with the “Satisfaction” dimension, reflecting users’

affective responses to the system. However, some participants noted mixed feelings regarding

video length and pacing, indicating that satisfaction can be sensitive to design factors such as

content structure and delivery speed (Murphrey et al., 2023). These findings underline the

importance of tailoring video content to maintain learner interest and satisfaction.

However, in line with Vygotsky (1978) constructivist principles, which emphasize the

importance of social interaction and the cultural context of learning, the findings highlight that

certain learners continue to favour collaborative and socially mediated environments when

engaging with programming concepts. Despite the increasing prevalence of self-paced and

technology-driven instructional methods such as video-based programming instruction, these

learners appear to benefit more from dialogic learning processes, peer collaboration, and guided

participation, underscoring the enduring relevance of the social dimension in cognitive

Adv. J. STEM. Ed

35

development and skill acquisition within programming education.

Applying Lund’s USE framework reveals that while video-based programming instruction is

perceived as a useful and satisfying learning tool, its full potential depends on optimising ease of

use and ease of learning. Enhancing the usability of the video-based programming instruction

format through improved navigation, clear video controls, and accessible design will likely increase

learner satisfaction and effectiveness. Additionally, balancing video length and pacing to maintain

engagement without overwhelming learners is essential. These implications emphasise that the

pedagogical benefits of video-based programming instruction are intertwined with its usability;

thus, future development and implementation should prioritise user-centred design principles to

maximise educational outcomes.

LIMITATION & FURTHER RESEARCH

The integration of video presentations into course design has gained increasing attention in

engineering education, with a growing body of research highlighting its pedagogical benefits (Clark

& Mayer, 2011; Dipon & Dio, 2024). Video-based programming instructions have been shown to

support cognitive processing, enhance engagement, and improve learning outcomes, particularly

in technical subjects such as programming. Despite this growing interest, a review of the literature

reveals a notable gap in research specifically addressing students’ preferences between traditional

methods of presentations and video formats for learning programming concepts within the

engineering education context.

The findings of this study offer important implications for STEM education, particularly in

the context of engineering instruction. The demonstrated receptiveness of students to video-based

learning underscores the potential of this medium as an effective alternative to traditional teaching

methods. For engineering educators and curriculum designers, integrating instructional videos into

programming courses presents an opportunity to diversify pedagogical strategies, cater to varied

learning preferences, and enhance student engagement and comprehension of complex technical

content. This approach may ultimately contribute to improved learning outcomes and greater

accessibility in engineering education (Dipon & Dio, 2024).

There are several limitations identified in this study. Firstly, this study only focuses on

undergraduate students from an Australian branch campus university in Sarawak, Malaysia. The

sample may not be representative of all undergraduate students of all private and public

universities in Malaysia. The results of this study may not be applicable to all educational

institutions, considering the variability of student populations and demographics. While efforts

were made to ensure that the sample was representative of the target population, it is possible that

the results may be influenced by unmeasured or unknown factors.

Further, the participants are students enrolled in an engineering programming subject for

third and final-year undergraduate students in the engineering programs. This means that the

findings of the study may not be generalizable to other engineering students in the institution. This

approach may not capture the complexity and richness of students' experiences and perceptions of

videos in programming learning.

Future research could adopt qualitative methodologies to gain deeper insights into students'

experiences, perceptions, and challenges related to video-based learning in engineering education.

Such an approach would complement the current findings by capturing the nuanced perspectives

of learners and informing more targeted and effective instructional design.

REFERENCES

Aboelela, E. (2021). Programming fundamentals for engineers and scientists. Springer.

Aubel, I., Krinke, S., Mende, R., Dietrich, A., Bertau, M., Zeidler, H. & Zug, A. (2024). Industry 4.0-

Adv. J. STEM. Ed

36

Driven STEM-Lab Modernization: Balancing Flexibility and Sustainability, Chemie Ingenieur

Technik, 96(11), pp. 1482-1489. https://doi.org/10.1002%2Fcite.202300236

Acatech (2016). Industrie 4.0 Maturity Index. Munich: National Academy of Science and

Engineering.

Alessi, S. M., & Trollip, S. R. (2011). Multimedia for learning: Methods and development (3rd ed.).

Pearson.

Alkhattabi, M. (2020). The impact of using the ASSURE model in designing e-learning environments

on students’ achievement and satisfaction. International Journal of Emerging Technologies

in Learning (iJET), 15(2), 109–123.

Batir, Z. & Sadi, O. (2021). A Science Module Designed Based on The ASSURE Model: Potential

Energy, Journal of Inquiry Based Activities (JIBA), 11(2), pp. 111-124

Bhasker, J. (1999). VHDL Primer. 3rd ed. Prentice Hall.

Brame, C. J. (2016). Effective educational videos: Principles and guidelines for maximizing student

learning from video content. CBE—Life Sciences Education, 15(4), es6.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and

Instruction, 8, 293-332.

Chen, C.-M., & Wu, C.-H. (2015). Effects of different video lecture types on sustained attention,

emotion, cognitive load, and learning performance. Computers & Education, 80, 108–121.

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven guidelines for

consumers and designers of multimedia learning. John Wiley & Sons.

Dallasega, P., Rauch, E., & Linder, C. (2018). Industry 4.0 as enabler of proximity for constructing

resilient supply chains. Procedia CIRP, 72, 1178–1183.

Dipon, C., & Dio, R. (2024). A Meta-Analysis of the Effectiveness of VBI on Students’ Academic

Performance in Science and Mathematics, International Journal on Studies in Education, 6(4),

pp. 732-746. https://doi.org/10.46328/ijonse.266

Eliana, N., Wati, U.S. & Rahmadona, S. (2024). Leveraging the ASSURE Model for Optimiased

Information Technology-Based Learning Media, Al-Ishlah Jurnal Pendidikan, 16(3).

https://doi.org/10.35445/alishlah.v16i3.5639

Fiorella, L., & Mayer, R. E. (2018). What works and doesn’t work with instructional video.

Computers in Human Behavior, 89, 465–470.

Floyd T. L. & Katz R. H. (2015). Digital Fundamentals. 11th ed. Pearson.

García-Peñalvo, F. J., Reimann, D., Tuul, M., Jormanainen, I., & Toivonen, T. (2018). Developing

computational thinking in the STEM disciplines. Education in the Knowledge Society, 19(4),

7–20.

Gomes, A., & Mendes, A. J. (2007). Learning to program, difficulties and solutions. International

Conference on Engineering Education (ICEE).

Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An

empirical study of MOOC videos. Proceedings of the First ACM Conference on Learning at

Scale Conference, 41–50. https://doi.org/10.1145/2556325.2566239

Hart, J., & Elliott, R. (2021). Evaluating the Effectiveness of Video Tutorials in Engineering

Education: A Case Study. International Journal of Engineering Education, 37(3), 1103-1113.

Heinich, R., Molenda, M., Russell, J. D., & Smaldino, S. E. (2002). Instructional media and technologies

for learning (7th ed.). Prentice Hall.

Huang, H. L., Hwang, G. J., & Chang, C. Y. (2020). Learning to be a writer: A spherical video-based

virtual reality approach to supporting descriptive article writing in high school Chinese

courses. British Journal of Educational Technology, 51, pp. 1386–1405.

Ibrahim, M., Antonenko, P., Greenwood, C., & Wheeler, D. (2012). Effects of segmenting, signaling, and

weeding on learning from educational video. Learning, Media and Technology, 37(3), 220–235.

https://doi.org/10.1002%2Fcite.202300236
https://doi.org/10.46328/ijonse.266
https://doi.org/10.35445/alishlah.v16i3.5639
https://doi.org/10.1145/2556325.2566239

Adv. J. STEM. Ed

37

Karim, M. R., Kamruzzaman, M., & Hasan, M. K. (2021). Integration of Python programming in

electrical and electronics engineering curriculum: A case study. Education and Information

Technologies, 26(2), 1757–1775. https://doi.org/10.1007/s10639-020-10332-2

Kay, R. H. (2012). Exploring the use of video podcasts in education: A comprehensive review of the

literature. Computers in Human Behavior, 28(3), 820–831.

https://doi.org/10.1016/j.chb.2012.01.011

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? Proceedings of the Second

International Workshop on Computing Education Research, 97–108.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development.

New Jersey: Prentice Hall.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice

programmers. ACM SIGCSE Bulletin, 37(3), 14–18.

https://doi.org/10.1145/1151954.1067453

Lange, C., & Costley, J. (2020). Improving online video lectures: learning challenges created by

media. International Journal of Educational Technology in Higher Education, 17(1).

https://doi.org/10.1186/s41239-020-00190-6

Lund, A. M. (2001). Measuring usability with the USE questionnaire. Usability Interface, 8(2), 3-6.

www.stcsig.org/usability/newsletter/index.html (accessed 15 June 2025).

Mayer, R. E. (2023). Multimedia Learning (3rd ed.). Cambridge University Press.

Murphrey, T. P., et al. (2023). Measuring Usability of Instructional Modules Designed to Improve

Learning Outcomes. Journal of Applied Communications, 107(2).

https://newprairiepress.org/jac/vol107/iss2/5

Nandi, A., Halder, T. & Das, T. (2024). Status of Scheduled Tribe Students in Science, Technology,

Engineering and Mathematics (STEM) at the Level of Higher Education in India, Advanced

Journal of STEM Education, 2(2).https://doi.org/10.31098/ajosed.v2i2.2668

Paivio, A. (1990). Mental Representations: A dual coding approach, Oxford Psychology Series (New

York, 1990; online edn, Oxford Academic, 1 Sept. 2008),

https://doi.org/10.1093/acprof:oso/9780195066661.001.0001

Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the industry

4.0 concept. Procedia Manufacturing, 13, 1206–1214.

Panesar, A. (2017). Machine learning and AI for engineers. CRC Press.

Robins, A. (2010). Learning edge momentum: A new account of outcomes in CS1. Computer Science

Education, 20(1), 37–71.

Ruslin, Mashuri, S., Abdul Rasak, M.S., Alhabsyi, F. & Syam, H. (2002). Semi-structured Interview: A

Methodological Reflection on the Development of a Qualitative Research Instrument in

Educational Studies, Journal of Research and Method in Education, 12(1), pp.22-29.

https://doi.org/10.9790/7388-1201052229

Smaldino, S. E., Lowther, D. L., & Russell, J. D. (2015). Instructional technology and media for

learning (11th ed.). Pearson.

Stöhr, C., Demazière, C., & Adawi, T. (2019). The polarizing effect of flipped classroom instruction

in a diverse student population. Journal of Computing in Higher Education, 31(2), 421–444.

Vygotsky, LS (1978). Mind in Society: The Development of Higher Psychological Processes.

Cambridge, MA: Harvard University Press.

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. Proceedings of

the 2014 Conference on Innovation & Technology in Computer Science Education, 39–44.

https://doi.org/10.1145/2591708.2591749

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning

environments. Educational Technology Research and Development, 53(4), 5–23.

https://doi.org/10.1007/s10639-020-10332-2
https://doi.org/10.1016/j.chb.2012.01.011
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1186/s41239-020-00190-6
https://doi.org/10.31098/ajosed.v2i2.2668
https://doi.org/10.1093/acprof:oso/9780195066661.001.0001
https://doi.org/10.9790/7388-1201052229
https://doi.org/10.1145/2591708.2591749

