Regional Segmentation Based on the Level of Digitalization of MSMEs in Indonesia

Authors

  • Antradiva Oktaviola Puspita Universitas Negeri Semarang, Indonesia
  • Dynda Aisyah Dyah Pitaloka Universitas Negeri Semarang, Indonesia
  • Deky Aji Suseno Universitas Negeri Semarang, Indonesia

DOI:

https://doi.org/10.31098/ijeass.v5i2.3419

Keywords:

K-Means Clustering, MSMEs, Digitalization.

Abstract

Digitalization of Micro, Small, and Medium Enterprises (MSMEs) plays a vital role in enhancing national and international competitiveness. This study aims to conduct regional segmentation in 34 provinces in Indonesia based on several indicators of the level of digitalization of MSMEs. This research is a quantitative study and an analytical descriptive approach that uses analysis techniques (K-means cluster) to map the distribution of MSMEs in Indonesia. Data pre-processing by standardizing data (z-score) to overcome differences in units of measurement. The type of data used is secondary data from the Central Bureau of Statistics and the Indonesian Payment System Association. The study identifies three clusters with different characteristics. The first cluster, comprising West Java, Central Java, and East Java, shows advanced MSMEs digitalization.  The second cluster consists of 30 provinces with a developing level of MSMEs digitization. The third cluster is occupied by Papua, which shows lagging MSMEs' digitalization. This research focuses on the uneven digitization of MSMEs by limiting the scope of research to 34 provinces in Indonesia, then does not include analysis of development in time series, financial aspects, or the impact of government policies on the development of MSMEs. The originality of this research lies in the use of 34 research objects in Indonesia in 2023 by applying non-hierarchical K-Means clustering analysis. The analysis in this study uses indicators including the distribution of MSMEs, the number of workers in the e-commerce sector, the number of e-commerce businesses, the level of QRIS adoption, and the use of social media.

References

Akhriza, T. M., Sophia, E., & Dewa, W. A. (2022). Evaluasi Pendampingan Branding berbasis Platform Digital bagi UMKM se-Malang Raya. SMATIKA JURNAL, 12(02), 265–277. https://doi.org/10.32664/smatika.v12i02.734

Arie Bowo, F. (2023). JURNAL STUDI INTERDISIPLINER PERSPEKTIF PERAN E-COMMERCE DAN STRATEGI PROMOSI DITINJAU DARI KEBIJAKAN KLUSTERING UMKM DI ERA DIGITAL.

Arrosyad, A. A., Purnamasari, A. I., & Ali, I. (2024). IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING UNTUK ANALISIS PERSEBARAN UMKM DI JAWA BARAT. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 3).

Helmi Nur Istiqomah Jurusan Matematika, V., Jenderal Soedirman, U., Rahmah Nurshiami, S., & Doli Marulitua Purba Bank Indonesia Tegal, H. (2024). IMPLEMENTASI K-MEANS CLUSTERING DALAM PENGELOMPOKAN KABUPATEN/KOTA DI EKS-KERESIDENAN PEKALONGAN BERDASARKAN VOLUME CAPAIAN TRANSAKSI QRIS MERCHANT. Jurnal Ilmiah Matematika Dan Pendidikan Matematika (JMP), 16(1), 29–40.

Homepage, J., Syaputri, D., Herwina Noprita, P., & Romelah, S. (2021). MALCOM: Indonesian Journal of Machine Learning and Computer Science Implemnetation of K-Means Algorithm for Economic Distribution Clustering Base on Demographics of Population Implementasi Algoritma K-Means untuk Pengelompokan Distribusi Sosial Ekonomi Masyarakat Berdasarkan Demografi Kependudukan. 1, 1–6.

Idris, A. (2024). Opportunities and Strategies for Accelerating Digital Transformation: Spatial Distribution Analysis and Clustering Using K-Medoids Method In South Sulawesi, Indonesia. Journal of Mathematics and Applied Statistics, 2(1), 51–62. https://doi.org/10.35914/mathstat.v2i1.188

Personal RePEc Archive, M., Leogrande, A., Drago, C., & Arnone, M. (2024). M P RA Analyzing Regional Disparities in E-Commerce Adoption Among Italian SMEs: Integrating Machine Learning Clustering and Predictive Models with Econometric Analysis Analyzing Regional Disparities in E-Commerce Adoption Among Italian SMEs: Integrating Machine Learning Clustering and Predictive Models with Econometric Analysis.

Remawati, D., Aji Putra, D. J., & Irawati, T. (2021). Metode K-Means Untuk Pemetaan Persebaran Usaha Mikro Kecil Dan Menengah. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 9(2), 39. https://doi.org/10.30646/tikomsin.v9i2.574

Sukmawati, C., & Dewi, R. (2022). Analysis Of Cash On Delivery (Cod) Payment Methods In Online Shopping Transactions In Indonesia.

Susilowati, H., Ratnaningrum, S. E. M. M., Si, M., Andriana, M., Kom, M., Hargyatni, T., & Sholihah, E. (n.d.). KINERJA BISNIS UMKM DI ERA DIGITAL PENERBIT CV. EUREKA MEDIA AKSARA.

Syifa, N., & Fahmi, R. N. (2021). Implementasi Metode K-Means Clustering dalam Analisis Persebaran UMKM di Jawa Barat. JOINS (Journal of Information System), 6(2), 211–220. https://doi.org/10.33633/joins.v6i2.5310

Tazkia, S. N., Nurcahyo, R., & Habiburrahman, M. (2024, August 27). Segmenting QRIS Users Using Cluster Analysis in Indonesia. https://doi.org/10.46254/sa05.20240136

Zoroja, J., Klopotan, I., & Stjepic, A.-M. (2020). Quality of e-Commerce Practices in European Enterprises: Cluster Analysis Approach. Interdisciplinary Description of Complex Systems, 18(2-B), 312–326. https://doi.org/10.7906/indecs.18.2.17

Downloads

Published

December 12, 2025

Citation Check

How to Cite

Puspita, A. O., Pitaloka, D. A. D., & Suseno, D. A. (2025). Regional Segmentation Based on the Level of Digitalization of MSMEs in Indonesia. International Journal of Entrepreneurship and Sustainability Studies, 5(2), 36–50. https://doi.org/10.31098/ijeass.v5i2.3419

Issue

Section

Research paper

Article Index