

Research Paper

Showcasing the Governance Assessment Tool as an "effective" contextual approach to water governance

Cesar Casiano Flores 1* , Jalal Mirnezami², Hans Bressers¹

- ¹ University of Twente, Netherlands
- ² University of Osnabrueck, Germany

Received: October 10, 2024 Revised: February 20, 2025 Accepted: June 20, 2025 Online: October 31, 2025

Abstract

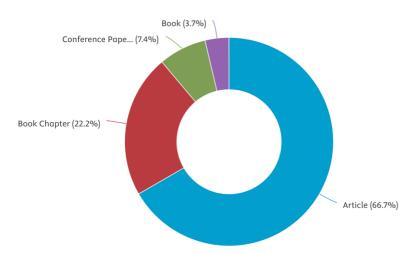
Addressing water challenges requires policies tailored to their governance context. The lack of such consideration is among the reasons why decentralisation, privatisation, and integrated water resources management have not achieved their intended outcomes. The Governance Assessment Tool (GAT) helps improve the effectiveness of water policies. GAT assesses how effective the implementation of water policies is and helps to develop policy recommendations to improve the effectiveness of the policy. As the purpose of this paper is to showcase the capabilities of GAT, we present its application in two different governance contexts (Iran and Mexico), to the European one where GAT was created. In our case selection, we focus on different challenges in water services (water supply and sanitation). In Iran, it is a single case study that assesses the groundwater policy, and in Mexico, it is a comparative case study of three sub-basins where the wastewater treatment plant policy is assessed. For each case, the results provide insights for improving policy effectiveness, such as the need for farmer participation in Iran and the need to enhance coordination by subnational governments in Mexico. These results showcase the GAT's capability to assess in-depth single case studies (Iran) and comparative analysis (Mexico). Moreover, GAT allows systematisation to navigate our understanding of complex challenges and provides a framework for academics and practitioners to understand the context and to propose tailored policies.

Keywords: Governance Context, Wastewater Policy, Underground Water

INTRODUCTION

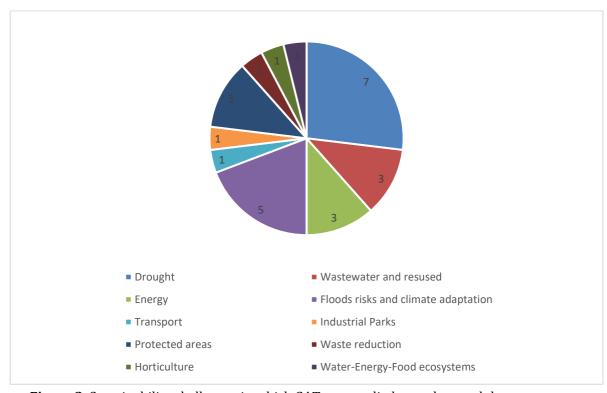
According to the United Nations World Water Development Report 2024: Water for Prosperity and Peace, around half of the world's population experiences severe water scarcity for at least part of the year, and sanitation remains a great challenge since 3.5 billion people lack access to such a service. To address these challenges, effective and equitable water allocation is required (UNESCO, 2024). Hence, water management requires tailored policies that can be effectively implemented within the governance context instead of normative approaches that aim to provide solutions worldwide. Yet, many developing countries have adopted recommendations for decentralisation, privatisation, and integrated management of their water resources (Casiano Flores, 2023). While these approaches have had the best intentions, they have not achieved the intended outcomes regarding water services provision due to the lack of consideration of the context where such reforms are implemented (Casiano Flores, 2023). From a practitioner and scholarly perspective, their major bottlenecks continue as part of the debate (Chakraborty et al., 2024). This debate has reached international organisations such as the OECD and the United Nations, which have reflected on the need for assessments that consider the governance context. Such contextual understanding is important to implement tailored policies that can address water management challenges in a more effective manner.

© (3) (8)


In this paper, we present a governance context approach that understands governance as the combination of the relevant multiplicity of responsibilities and resources, instrumental strategies, goals, actor-networks, and scales that form a context that, to some degree, restricts and, to some degree, enables actions and interactions. This definition relates the governance context to the likelihood that planned or proposed interventions can be implemented and realised in practice. By doing so, it covers the "effectiveness" part of the OECD Principles on Water Governance. In other words, our definition relates the governance context to the likelihood that planned or proposed interventions can be implemented and realised in practice. This approach is called the "Governance Assessment Tool" (GAT), developed at the University of Twente in the Netherlands. Its roots are in a successful EU research framework project, and it has had several stages of further development since then (e.g., Boer de and Bressers, 2011; Bressers and Kuks, 2013; Bressers et al., 2016; Casiano Flores, 2017; Özerol and Bressers, 2023).

Understanding the relevance of contextual approaches and based on our GAT knowledge, this paper aims to showcase GAT's capabilities to identify water management challenges in various contexts. This knowledge can facilitate the proposal of tailored interventions. To do so, we present its application in two different governance contexts, to the European context where GAT was initially developed. Moreover, these two cases (Iran and Mexico) were selected due to their governmental, economic, social, and cultural differences. In each case, we analysed different water issues, contributing to showcasing GAT capabilities. In Iran, we use the results of research on groundwater for supply service, and in Mexico, on the wastewater treatment policy. Despite the difference between the cases, it is important to highlight that the two countries, like many others worldwide, underwent legal reforms to improve water management in the 90s and the 2000s. These reforms were inspired by the Integrated Water Resource Management (IWRM) approach. However, they are still facing important water challenges.

LITERATURE REVIEW


Although this paper focuses on GAT, we acknowledge that in the last decades other frameworks considering the governance context have been developed. Some examples are the Collaborative Governance Framework (Ansell & Gash, 2008), the Management and Transition Framework (Pahl-Wostl, 2009; Pahl-Wostl et al., 2010), the heuristic framework based on the distributive theory of institutional change (Thiel & Egerton, 2011), the OECD Water Indicator Framework (OECD, 2018), the Ten building blocks for sustainable water governance (Van Rijswick et al., 2014) and the United Nations approach (United Nations, 2021a, 2021b).

GAT development started in 2013, and researchers in many countries have extensively applied it (Özerol and Bressers, 2023). In the field of water policy, 19 projects were conducted in 16 countries, both developed and developing countries. More recently, six studies were added that applied the GAT in other fields, mostly in developing countries. This has resulted in dozens of journal publications, book chapters, and theses. To exemplify this, we conducted a literature review in the academic databases of Web of Science and Scopus, using as keyword "Governance Assessment Tool". While many of the results overlapped, we identified 22 documents in Web of Science and 35 in Scopus, from which a total of 27 used GAT (Al-Khatib et al., 2017; Batlles-delaFuente et al., 2024; Boer de et al., 2016; Bressers et al., 2016b; Browne et al., 2016; Casiano Flores et al., 2019; Gana & Hoppe, 2017; Gunawan et al., 2019; Jain et al., 2017, 2020; Kreiner & Franco-García, 2019; La Jeunesse et al., 2019; Larrue et al., 2016; Latanna et al., 2023; Lordkipanidze et al., 2019, 2020; Maia et al., 2019; Özerol and Bressers, 2023; Sievers et al., 2025; Troeltzsch et al., 2015; Tröltzsch, 2019; Tröltzsch et al., 2016). As shown in Figure 1, most of these documents were scientific articles.

Figure 1. Percentage of GAT's type document identified in the Scopus literature review (Source Scopus).

From the 27 documents, 26 focused on specific sustainability challenges, being the most studied being related to water challenges, droughts, floods, and wastewater. Figure 2 shows the results.

Figure 2. Sustainability challenges in which GAT was applied to understand the governance context.

The purpose of this review is to exemplify the GAT applications and not to provide an exhaustive list of publications. We are aware that there are studies that were not identified with the keyword (Mirnezami et al., 2020; Vikolainen et al., 2017). Still, based on our GAT knowledge, we can confidently state that while those articles have used GAT, none of them had as the objective to

showcase its capabilities.

RESEARCH METHOD

The GAT focuses on the governance conditions that may hinder the implementation of water resource management policies and projects in complicated and dynamic environments. Governance is viewed as a context for measures and their application rather than the action itself. The specific circumstances of the cases in which actors operate inevitably influence what they want, believe, and can do.

Governance is often said to differ from earlier developed concepts like government or policy in that it emphasises the multi-level and multi-actor character of all forms of steering of any specified (sub)sector of society. In our approach to the concept of governance, we not only discern the multiplicity of the levels and the actors involved but also apply the idea that the concept of governance assumes multiplicity to the dimensions of the older concept of policy: goals, instruments, and the means to apply them (Howlett, 2019). In each governance context, multiple goals will likely be involved, along with instruments and means to apply them (Lordkipanidze et al., 2019).

Thus, we discern five dimensions of governance. Governance assumes that policy implementation has a general multi-level character, which involves levels and scales (not necessarily administrative levels). It also assumes the multi-actor character of policy implementation, which involves different actors and networks. Furthermore, governance assumes the multi-faceted character of the problem perceptions and resulting goal ambitions of policy implementation. This means that there are different problem perceptions and goals that are associated with policy implementation. Governance also assumes the multi-instrumental character of policy strategies for policy implementation, which involves different strategies and instruments. Lastly, governance assumes a complex multi-resource basis for policy implementation, which involves responsibilities and resources for implementation.

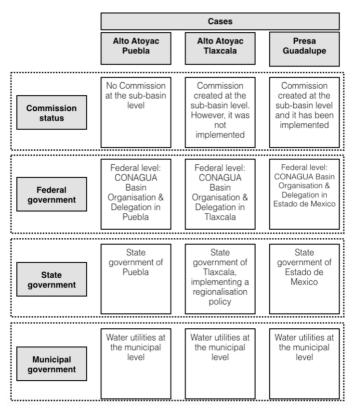
In the six-country Euwareness project, on water resource protection under the EU Water Framework Directive (Bressers & Kuks, 2004), this approach to governance was combined with parts of the Institutional Resource Regime (IRR) framework (Knoepfel, 2007), which builds further on the Institutional Analysis and Development (IAD) framework by Ostrom and colleagues. From IRR, especially the use of two criteria for successful resource regimes was incorporated: extent and coherence. Where extent in IRR is just used for the degree to which all users and uses of the resources are regulated, and coherence is applied to the internal coherence within relevant policies and property rights and the external one between them; in the Euwareness project, both criteria were applied to all five dimensions of governance. The study showed a significant effect on the sustainability of water resource use.

Later, in the New Rurality project, sponsored by the French Research Council, long-term implementation of river restoration was studied in which the "complex and dynamic" nature of such processes led to the addition of two extra criteria to determine the degree of supportiveness of the governance context: flexibility, allowing for adaptive strategies of dealing with obstacles and chances during processes of more than a decade and intensity, the combined pressures to move into a more sustainable direction (Boer de & Bressers, 2011).

Four quality criteria were considered and applied to each dimension: 1) Extent, the degree to which relevant aspects are considered; 2) Coherence, the degree to which all different aspects reinforce each other; 3) Flexibility, the degree to which multiple roads can be taken to support the achievement of the goals and 4) Intensity, the degree to which the governance regime urge and support change. Together, this matrix of 20 cells combining dimensions and qualities (See Table 1) identifies the degree to which the governance context supports or restricts the effective

implementation of water management interventions and helps provide policy recommendations to improve the effectiveness of the policy. Each of the cells has some guiding questions and can be assessed as supportive, neutral, or restrictive (see the matrix and further explanations, Bressers et al., 2016). Taken together, the degree of supportiveness can range from low to high.

Table 1. Water governance matrix (Bressers et al., 2015)


	Qualities of the governance regime									
Governance Dimension	Extent	Coherence	Flexibility	Intensity						
Levels & Scales	Is there participation of all the relevant government levels?	Are the government levels working together?	•	Is there a government level or levels promoting the innovative projects?						
Actors & Networks	Are all relevant actors involved?	Are government and non-government actors working together and trusting each other?	Is it possible to include new actors to create social capital and to support each other's tasks?	Is there a non- government actor or a coalition of actors promoting the innovative projects?						
Problem Perspectives & Goal Ambitions	Are the different perspectives being considered?	Are the key actors sharing a similar goal and vision?	Are there opportunities to reassess goals?	How different are the goals from the status quo?						
Strategies & Instruments	Are all the instruments and strategies being considered?	Are there overlaps or conflicts among the different strategies and instruments?	Are there opportunities to combine different instruments or strategies?	Are the current strategies and instruments appropriate for the innovative projects?						
Responsibilities & Resources	Are responsibilities clearly assigned with sufficient resources?	Is there collaboration across institutions to support each other's responsibilities and to combine resources?	Is it possible to pool responsibilities and resources without jeopardizing accountability?	Are the resources sufficient to implement the measures needed for the intended change?						

We used GAT to assess the implementation of groundwater conservation in Iran (Mirnezami et al., 2020and the wastewater treatment plant policy in central Mexico (Casiano Flores et al., 2019). For both cases, the data sources included secondary data from technical reports, legal texts including laws, policies, strategies, national development plans, news articles, and official

webpages of organizations. For the Iranian case, 74 semi-structured interviews were undertaken (as primary data) with informant farmers in a deeply groundwater-dependent area, as well as the national, regional, and local authorities (Mirnezami et al., 2020). Meanwhile, for the Mexican case, 66 semi-structured interviews were conducted with national, subnational, and water utility authorities, along with the economic actors and non-governmental organisations (Casiano Flores, 2017).

Iran has an intense groundwater extraction (Giordano, 2009). The number of groundwater extraction points increased from 546,000 to more than one million during the period 2002 to 2015. Paradoxically, at the same time, the extracted water volume declined from 74.6 to 61.3 km³/year. This decline highlights the reduced capacity of aquifers to provide fresh/usable groundwater resources. The annual extraction of 5.4 km³ of nonrenewable groundwater resources has caused a constant negative trend in groundwater level, ranging from 10 to 100 cm per annum in diverse geographic regions, with a mean decline of 49 cm per year at the national scale (Noori et al., 2021). The condition has also been worsened by a reduced rate of groundwater recharge (Noori et al., 2023). The Iranian government is responsible for managing and regulating groundwater resources according to the law (Mirnezami & Bagheri, 2017; Nabavi, 2017). Since 1968, several reforms have taken place to support groundwater conservation and coordinate groundwater management; however, their conservation policies have been ineffective (Mirnezami et al., 2020).

In Mexico, the GAT analysis was applied to the wastewater treatment policy. Currently, the country still faces important challenges in its wastewater treatment policy, as it only treats approximately 67.5% (OECD, 2024), after decades of important investments. The GAT application was conducted in three basins: Puebla-Atoyac in the state of Puebla, Atoyac-Zahuapan in Tlaxcala, and Presa Guadalupe in the State of Mexico. These three cases present a variability in their multilevel governance structure. Figure 3 shows the structural variations in terms of institutions and governmental actors.

Figure 3. Governance structure of the selected cases (Casiano Flores, 2017)

The three cases are located in the central part of Mexico. The decentralisation efforts that started in 1980 by the federal government have not seen significant improvements in water utilities' performance; while economic resources have been mainly used to build or renovate plants, there are operational problems or abandonment of wastewater treatment plants across all three cases (Casiano Flores, 2017). Mexico adopted via a national reform in 1992 an IWRM that has resulted in contradictory governance structures (Casiano Flores, 2023). The main driver of the water policy, including wastewater treatment in Mexico, is the National Water Commission (CONAGUA) via the Governmental Commission of Regulation and Follow-up (CORESE). CORESE is responsible for implementing wastewater policies for both the state and federal governments. It is established by the Rules of Operation of CONAGUA's programs and enables state governments to propose their ideas to federal programs. In the case of the state level, this is crucial in investment planning and tendering (Casiano Flores et al., 2016; Casiano Flores et al., 2019). Meanwhile, municipalities and their water utilities are responsible for the wastewater treatment plant.

FINDINGS AND DISCUSSION

Tables 2 and 3 summarise the results of the GAT application, and such results are explained below. Based on Table 1, the assessment insights are two-fold. First, it highlights that the governance context in terms of its extent and coherence is not supportive. While the extent is not sufficiently developed to cover and engage various elements, the coherence among the currently engaged elements does not have the potential to compensate for extent-related deficiencies and, even in most cases, adds to the lack of support of the governance context. These results show that even in the hierarchical and exclusively governmental structure of groundwater conservation, there is little space for including missing, excluded parts of the puzzle - including the openness to bottom-up movements and non-state actors, adoption of non-technical and non-bureaucratic instruments, and so on.

Second, but even more important, is the mixed insight that our inquiry into flexibility and intensity provides. The flexibility assessment results show that the concurrent governance context is seemingly open to fixing deficiencies. However, the intensity is mainly placed on the business as usual. It means there is a complex setting for improvement efforts, and one needs to be cautious in consulting and suggesting solutions to overcome the poorly developed governance setting from the extent and coherence perspectives. Advocating for the inclusion of non-state actors or alternative instruments can be counterproductive. In other words, the ruling network of actors expresses openness to change but can finally translate the recommendations into counter-realizations. Giving space to non-state or alternative instruments finally turns into creating institutional initiatives or a new list of projects where there is little, if any, space for their survival and effectiveness. This mixed insight of the two qualities reveals the 'symbolic' change: turning the desirable intentions into new formalities which have little (or even sometimes opposite) relation to their original intentions.

Table 2. Key assessment findings about groundwater governance in Iran based on the GAT framework (Mirnezami et al., 2020)

	Qualities			
Governance	Extent	Coherence	Flexibility	Intensity
Dimension				
Levels	Hierarchical	Little alignment	Marginal efforts	Aspirations for
and scales	structure; non-	between local and	for improving	addressing the
	cooperating	central levels	the multi-level	gaps, however,

	jurisdictions		governance	again with a hierarchical orientation
Actors and networks	Lack of participation of non-state actors in the policy	Dominance of bureaucratic connections with deep conflicts among (state) actors	Efforts for increasing inclusiveness and fixing the conflictual connections	Aspirations for addressing the gaps by providing new formal institutions (institutional layering)
Problem perspectives and goal ambitions	Strong dominance of (social- engineering) technical-fix over the social- political views	Deep alignment of technical-fix views to the bureaucratic context	Attitude for inclusion of social (engineering) best practices	Fluctuating with the (dis)appearance of change-advocating policymakers, however, with a social-engineering perspective
Strategies and instruments	An inclusive list of instruments, however, with fundamentally different priorities	Selective (contradictory) approach in defining and operationalising instruments	Attitude for having diverse instruments	Strongly advocating a controlling strategy, rather than communicative or relational
Responsibilities and resources	Lack of fundamental human and financial resources, as well as social/political capital for following other than the controlling strategy	Inconsistency of existing (dominant) human resources (and mindsets) for following noncontrolling strategies	Attitude for diversifying the human resource and creating social/political capital	Fluctuating with the (dis)appearance of change-advocating policymakers, however, with a social-engineering perspective

Based on Table 2 we can state that GAT allowed the identification of the following governance issues: 1) ineffective conservation policies due to lack of multi-level coordination and farmers participation, 2) overlapping and conflicted responsibilities, 3) inadequate monitoring of groundwater facilitating illegal extraction, 4) development of unfeasible solutions, 5) focus on short-term solutions and 6) mistrust to government due to populism and corruption practices (S. J. Mirnezami et al., 2020). Hence, we consider that the groundwater governance debate has to be politicised, i.e., becoming reflexive about the politics of this policy and its implementation. Without politicising the groundwater discourse, the reproduction of power imbalances embedded is more likely to continue.

For the case of Mexico, as can be observed in Table 3, the governance context in the selected cases is primarily restrictive, resulting in fragmentation, a lack of flexibility and intensity, and a lack of stakeholder trust and certainty. There is a lack of municipal capacity; resources are centralised at the national level, and policy fragmentation and coordination challenges exist. The establishment of symbolic basin institutions via institutional layering is another problem

Through the comparative analysis, we identified that in the Mexican case, the subnational governments play an important role in the wastewater treatment plant policy. Subnational governments are policy drivers and coordinators that can improve the effectiveness of the policy. They also have more financial and human resources than local governments and greater political stability. Confirming that the subnational government is key to improving the wastewater policy in the Mexican context (Pacheco-Vega, 2015b), brings the relevance of the principle of subsidiarity. This principle states that the most appropriate level of governance should take action to achieve effective results (Jordan, 2000). The fact that in Mexico, subnational governments have greater financial and human resources and enjoy a six-year term in office improves the stability of the policy implementation and increases its effectiveness. However, as of today, any changes in governance arrangements require the willingness of subnational governments (Casiano Flores, 2023).

Table 3. Individual results from the governance assessments in three subnational regions in Mexico (Casiano Flores, 2017)

	Qualities/Assessment Atoyac-Puebla				Qualit	•	essment Atoyac- Qualities/Assessment G axcala Basin, Estado de Mo					-	
Governa nce Dimensi on	Extent	Cohere nce	Flexibil ity	Intensi ty	Extent	Cohere nce	Flexibi lity	Intensi ty	Extent	Coheren ce	Flexibilit y	Intens ity	
Levels and scales	Hierarch ical structure ; limited cooperat ion	lack of	Lack of flexibilit y due to the hierarch ical relation ship	level of intensit y betwee n the	Hierarch ical structure . Cooperat ion of the national level with the subnatio nal level, and this with the local levels.	the	flexibil ity due to the	Balance d level of intensit y betwee n the nationa l and subnati onal levels	Hierarch ical structure . Cooperat ion of the national level with the subnatio nal level, and this with the local levels.	limited trust	Lack of flexibility due to the hierarchi cal relations hip	The main intensi ty comes from the nation al level	
Actors and network s	Absence of the non-governm ental actors in the policy impleme ntation	Govern mental and non- govern mental actors do not trust each other.	Lack of flexibilit y to include social actors and create social capital	Intensit y comes mainly from the nationa l govern ment and some	Lack of participa tion of non- state actors and local governm ents in	Govern mental and non- govern mental actors do not work togethe r. The	flexibil ity to		Participa tion of governm ental and non- state actors in the Basin Commiss ion.	There is a lack of coherenc e and alignmen t between the actors participa ting in	capital that the Basin Commiss	While there is pressu re from social actors and the Basin	

		Constan t changes in the bureauc racy and social exclusio n negative ly impact		non- govern mental actors, but their impact is very limited	the policy	basin commis sion, created to increas e collabor ation, did not session		ments. But active social actors are exclude d		the Basin Commiss ion and those in actual wastewa ter projects		Commi ssion provid es the space, their impact is very limited
Problem perspecti ves and goal ambition s	Strong dominan ce of the upper governm ental levels' perspecti ves	and non- govern mental actors	Lack of flexibilit y to align perspec tives or to readjust goals	are far too reach when conside	Strong dominan ce of the upper governm ental levels' perspecti ves	only those of	flexibil ity to align perspe ctives	The goals are still far too reach, but the change s in manage ment have increas ed the percent age of treated water	ves. Non- governm ental actors' perspecti	non- governm ental actors in the Basin Commiss ion have different goals with	flexibility to align the perspecti ves and goals of	The differe nt perspe ctives presen ted in the Basin Commi ssion have not made a differe nce, as they have not impact ed the waste water policy
Strategie s and instrume nts	Strategie s and instrume nts are fragment ed, and secondar y legislatio n is pending	are no issues in terms of overlaps , but there are disagree ments across govern mental	ents can only be combin ed if they are	The current strategi es are not approp riate, as the policy require s long-term plannin g, and the strategi es and instrum ents respon d to govern mental periods	Strategie s and instrume nts are fragment ed, and secondar y legislatio n is pending	are no issues in terms of overlap s, and there has been an increasi ng alignme	instru ments can only be combi ned if they are explicit ly consid ered in the legislat	ents adopte d by the subnati onal govern ment and support	improve d communi cation, but has	are synergie s between the strategie s and	combine d if they are explicitly consider ed in the	The strateg ies and instru ments adopte d have not really increas ed the percen tage of treated water

-	Responsi		Pooling		Responsi			Resour	Responsi		Pooling	Resour
bilities	bilities	progra	resourc	es are	bilities	national	g	ces are	bilities	national	resource	ces are
and	are	ms aim	es faces	insuffici	are	progra	resour	still	are	program	S	insuffic
resource	clearly	to	challeng	ent and	clearly	ms aim	ces	insuffici	clearly	s aim to	between	ient for
S	assigned,	combine	es in	unevenl	assigned,	to	betwee	ent, but	assigned.	combine	governm	both
	but	the	terms of	у	and	combin	n the	they	However	the	ental	the
	resource	resourc	account	distribu	resource	e the	nation	have	the Basin	resource	actors is	waste
	s are	es of the	ability.	ted. The	s have	resourc	al and	been	Commiss	s with	only	water
	limited	differen	Being	priority	been	es with	subnat	increas	ion has	lower	possible	treatm
	regardin	t	the	of	increase	lower	ional	ed to	very	governm	by	ent
	g human	govern	main	buildin	d via	govern	levels	favour	limited	ental	following	plant
	resource	mental	issue at	g plants	subnatio	mental	is	a	resource	actors.	national	policy
	s and	actors,	the	over	nal	actors.	possibl	sustain	s focused	However	guideline	and
	economi	but in	subnati	their	reforms	Subnati	e by	able	on its	, there is	S	the
	c	many	onal	sustain		onal	followi	manage	daily	a high		Basin
	capacity	cases,	level	able		reforms	ng	ment of	operatio	level of		Commi
		the		operati		are	nation	the	ns and	fragment		ssion
		subnati		on		support	al	wastew	not on	ation		
		onal and		negativ		ing such	guideli	ater	the	that		
		lower		ely		a	nes	treatme	wastewa	creates		
		govern		affects		combin		nt plant	ter	commun		
		mental		the		ation		policy	treatmen	ication		
		levels		policy					t policy.	issues		
		lack							While	among		
		such							the	governm		
		resourc							policy	ental		
		es							itself	actors		
									also has	and with		
									limited	non-		
									resource	governm		
									S.	ental		
										actors		

The results from the GAT application were externally validated with Nuevo Leon and Aguascalientes subnational governments, as they have the highest rates of wastewater treatment (Casiano Flores, 2023). However, there are substantial differences in how the subnational governments coordinate the policy. In the case of Aguascalientes, the government set mechanisms to directly operate the wastewater treatment plants (Pacheco-Vega, 2015a) without being involved in other water services, while in Nuevo Leon, the policy has been coordinated via the state water utility named Servicios de Agua y Drenaje de Monterrey (SADM) (Aguilar-Barajas et al., 2015). Still, there is a need for mechanisms to increase transparency and accountability when subnational governments voluntarily participate in implementing and coordinating the wastewater policy.

The increasing role of subnational governments can be partially explained by recognising regional and local identities and the failure of "one-size-fits-all" approaches (Connell et al., 2022). OECD reports state that 65% of the Sustainable Development Goals' targets will not be reached without the coordination of subnational governments and local governments (OECD, 2019b, 2019a). Subnational governmental actors are important drivers of policy coordination (Gjaltema et al., 2020), as they can be key policy coordinators (Indset, 2023; Trein et al., 2019) to increase collaboration among actors and to scale up policies (Casiano Flores & Crompvoets, 2020; Jörgensen et al., 2015) to make the policy more effective. Moreover, they have proven to be key in addressing water policy fragmentation (Cacal & Taboada, 2022), and they have been increasingly taking over responsibilities from federal and local governments in the environmental field (Casiano Flores et al., 2016; Happaerts et al., 2012).

CONCLUSIONS

Despite the differences between the Iranian and Mexican contexts, the application of GAT allowed the identification of challenges that water management faces, and the development of tailored recommendations to improve the policy's effectiveness. Among the similarities that both contexts face is a symbolic implementation. Many of the reforms that have been conducted to address the issues of the water policies have remained only on paper and have not translated into effective policy implementation. While both countries share a hierarchical context and a hierarchical policy implementation, GAT permits to differentiate that in the case of Mexico, the effectiveness of the wastewater policy can be improved by strengthening the multi-level coordination, meanwhile, in the case of Iran, it requires a network or co-creation approach via social participation. In this sense, the results show that in Iran, farmers need to be part of the policymaking and implementation processes, and in Mexico, the subnational governments' coordination role is essential and needs to be strengthened. Based on these results, we can safely state that GAT provides recommendations for tailored interventions beyond the classic "panaceas" that other governance assessments can provide.

Hence, we can state that the two selected cases allow us to showcase GAT's flexibility and adaptability, as it is capable of assessing in-depth single case studies (Iran) and comparative analysis (Mexico). GAT's systematic method allows us to navigate our understanding of complex challenges and enables the improvement of decision-making and policy design. Moreover, it provides a framework for scholars and practitioners to consider the context and dynamics of policy implementation. As previously mentioned, we illustrated the wide applicability of GAT by presenting two applications in different contexts from the one where GAT was created. GAT has been applied to water management policy implementation by a few dozen different researchers (See Figure 2) in a wide range of countries across the globe. On top of these studies, as shown in the literature review, GAT has analysed other sustainability-related policies, like sustainable industrial parks, energy, transport, or protected areas.

In short, we consider that GAT makes four significant contributions to the field of water governance: 1) It provides a comprehensive framework to identify policy implementation issues from the governance context perspective. 2) It provides a structured approach that facilitates the identification of governance issues systematically to develop tailored interventions. 3) The GAT can be used for single and comparative analysis, and 4) The GAT's capability to provide contextual interventions can foster innovative policy approaches beyond those one-size-fits-all solutions.

LIMITATIONS & FURTHER RESEARCH

While this case selection can be seen as limited when compared to the GAT body of knowledge, we believe our selected cases and their internal variety are sufficient to showcase GAT capabilities. In terms of the limitations, we agree that while GAT has relevant advantages due to the understanding of contexts, its application is research-intensive and requires a high level of local understanding, which can also be time-consuming, and these resources are not always available. For that reason, recently, an attempt has been made to develop a simplified version of GAT for practitioners to use (Özerol and Bressers, 2023). They often have the local knowledge but lack the understanding of the concepts used in the GAT, which allows a deeper comprehension of the context in which they have to do their work. Developing such a simplified GAT proved to be possible, but only at the expense of narrowing down the scope of its possible use, in this case, to climate resilience projects in midsize cities in Europe (Özerol and Bressers, 2023). Thus, for research purposes, while the original scheme remains the most useful, we acknowledge that its application can be challenging without specialised training or expertise. Therefore, we consider it

important that future studies focus on the development of simplified versions of GAT that can be used by practitioners with limited resources and expertise.

Although the GAT has been used in studies involving multiple contexts, we believe that the way GAT is structured and applied can be compatible with other comparative approaches, such as "qualitative comparative analyses". Yet further research is needed in this regard. Therefore, we invite scholars worldwide to continue testing the GAT application along with other methods to support its evolution. Moreover, broader analysis can bring together the different GAT applications across different contexts and sustainability challenges, such as energy or climate adaptation. This could help to construct a body of knowledge that can provide a broader understanding of the role of the governance context in complex issues and sustainable transitions. In the same line, new complex topics such as the role of digital innovations to address complex challenges are arising. Understanding the governance context under which such innovations take place is relevant, and we believe future research using GAT can be developed on this topic.

As we have noted, we recognise the limitations of this paper and GAT. We believe that future research directions can help deepen our understanding of the complex and sustainability challenges we face. Therefore, we hope this paper, in addition to showcasing GAT's capabilities, serves as a source of inspiration for future applications

REFERENCES

- Aguilar-Barajas, I., Sisto, N., & Ramírez Orozco, A. (2015). *Agua para Monterrey: Logros, retos y oportunidades para Nuevo León y México* (S. A. de C. V. r Agencia Promotora de Publicaciones, Ed.). R Agencia Promotora de Publicaciones, S.A. de C.V. https://www.sadm.gob.mx/PortalSadm/Docs/aguaparamonterrey-media.pdf
- Al-Khatib, N., Shoqier, J. A. H., Özerol, G., & Majaj, L. (2017). Governing the reuse of treated wastewater in irrigation: Case study of Jericho, Palestine. *International Journal of Global Environmental Issues*, 16(1–3). https://doi.org/10.1504/IJGENVI.2017.083424
- Ansell, C., & Gash, A. (2008). Collaborative governance in theory and practice. *Journal of Public Administration Research and Theory*, 18(4), 543–571. https://doi.org/10.1093/jopart/mum032
- Batlles-delaFuente, A., Franco-García, M. L., Castillo-Díaz, F. J., & Belmonte-Ureña, L. J. (2024). Governance challenges and strategic opportunities for implementing circular economy in greenhouse horticulture: A case study from the Netherlands. *Equilibrium. Quarterly Journal of Economics and Economic Policy*, 19(4), 1229–1271. https://doi.org/10.24136/eq.3261
- Boer, C. de, & Bressers, H. (2011). *Complex and dynamic implementation processes: The renaturalization of the Dutch Regge River.* Universiteit Twente in collaboration with the Dutch Water Governance Centre.
- Boer, C. de, Vinke-de Kruijf, J., Özerol, G., & Bressers, H. (2016). Collaborative water resource management: What makes up a supportive governance system? *Environmental Policy and Governance*, 26, 229–241. https://doi.org/10.1002/eet.1714
- Bressers, H., Bressers, N., Browne, A., Furusho, C., Lajeunesse, I., Larrue, C., Özerol, G., Ramos, M.-H., Stein, U., Tröltzsch, J., & Vidaurre, R. (2015). *Benefit of governance in drought adaptation: Governance assessment guide* (H. Bressers & N. Bressers, Eds.). DROP Project, European Union.
- Bressers, H., Bressers, N., Kuks, S., & Larrue, C. (2016a). The governance assessment tool and its use. In H. Bressers, N. Bressers, & C. Larrue (Eds.), *Governance for drought resilience*. Springer International Publishing.
- Bressers, H., Bressers, N., Kuks, S., & Larrue, C. (2016b). The governance assessment tool and its use. In H. Bressers, N. Bressers, & C. Larrue (Eds.), *Governance for drought resilience* (pp.

- 45–65). Springer International Publishing. https://doi.org/10.1007/978-3-319-29671-5-3
- Bressers, H., & Kuks, S. (2004). *Integrated governance and water basin management: Conditions for regime change towards sustainability.* Kluwer Academic Publishers. http://doc.utwente.nl/48981/
- Bressers, H., & Kuks, S. (2013). Water governance regimes: Dimensions and dynamics. *International Journal of Water Governance*, 1(1), 133–156. https://doi.org/10.7564/12-IJWG1
- Browne, A. L., Dury, S., De Boer, C., La Jeunesse, I., & Stein, U. (2016). Governing for drought and water scarcity in the context of flood disaster recovery: The curious case of Somerset, United Kingdom. In H. Bressers, N. Bressers, & C. Larrue (Eds.), *Governance for drought resilience* (pp. 83–107). Springer International Publishing. https://doi.org/10.1007/978-3-319-29671-5_5
- Cacal, J. C., & Taboada, E. B. (2022). Assessment and evaluation of IWRM implementation in Palawan, Philippines. *Civil Engineering Journal*, 8(2), 290–307. https://doi.org/10.28991/CEJ-2022-08-02-08
- Casiano Flores, C. (2017). *Context matters: Water governance assessment of the wastewater treatment plant policy in central Mexico* [Doctoral dissertation, University of Twente]. https://doi.org/10.3990/1.9789036543224
- Casiano Flores, C. (2023). Toward a contextualized research agenda: Governance challenges of the wastewater treatment policy in Mexico and the role of subnational governments. *WIREs Water*. https://doi.org/10.1002/wat2.1617
- Casiano Flores, C., & Crompvoets, J. (2020). Assessing the governance context support for creating a pluvial flood risk map with climate change scenarios: The Flemish subnational case. *ISPRS International Journal of Geo-Information*, 9(7), 460. https://doi.org/10.3390/ijgi9070460
- Casiano Flores, C., Crompvoets, J., Ibarraran Viniegra, M. E., & Farrelly, M. (2019). Governance assessment of the flood's infrastructure policy in San Pedro Cholula, Mexico: Potential for a leapfrog to water sensitive. *Sustainability*, 11(24), 7144. https://doi.org/10.3390/su11247144
- Casiano Flores, C., Özerol, G., Bressers, H., Kuks, S., Edelenbos, J., & Gleason, A. (2019). The state as a stimulator of wastewater treatment policy: A comparative assessment of three subnational cases in central Mexico. *Journal of Environmental Policy & Planning*. https://doi.org/10.1080/1523908X.2019.1566060
- Casiano Flores, C., Vikolainen, V., & Bressers, H. (2016). Water governance decentralisation and river basin management reforms in hierarchical systems: Do they work for water treatment policy in Mexico's Tlaxcala Atoyac sub-basin? *Water*, 8(5), 210.
- Chakraborty, S., Meraj, G., Mohan, G., Kumar, P., Chatterjee, A., & Sankar Bagdi, S. (2024). Integrated resource use management practices for better urban water management through the application of SES lens. In S. Chakraborty, A. Chatterjee, & P. Kumar (Eds.), *Urban water ecosystems in Africa and Asia* (1st ed., pp. 11–21). Routledge. https://doi.org/10.4324/9781003437833-2
- Connell, A., St Denny, E., & Martin, S. (2022). How can subnational governments develop and deliver distinctive policy agendas? *International Review of Administrative Sciences, 88*(4), 1159–1175. https://doi.org/10.1177/0020852321996429
- Gana, J., & Hoppe, T. (2017). Assessment of the governance system regarding adoption of energy efficient appliances by households in Nigeria. *Energies*, 10(1), 132. https://doi.org/10.3390/en10010132
- Giordano, M. (2009). Global groundwater? Issues and solutions. *Annual Review of Environment and Resources*, *34*(1), 153–178. https://doi.org/10.1146/annurev.environ.030308.100251

- Gjaltema, J., Biesbroek, R., & Termeer, K. (2020). From government to governance...to metagovernance: A systematic literature review. *Public Management Review, 22*(12), 1760–1780. https://doi.org/10.1080/14719037.2019.1648697
- Gunawan, H., Bressers, H., Megantara, E. N., Kurnani, T. B. A., Hoppe, T., Mohlakoana, N., & Parikesit. (2019). Governance of climate change mitigation in the transport sector and selected cobenefits in Indonesia: The case of Bandung City. *IOP Conference Series: Earth and Environmental Science*, 306(1), 012015. https://doi.org/10.1088/1755-1315/306/1/012015
- Happaerts, S., Bruyninckx, H., & Van den Brande, K. (2012). Introduction. In H. Bruyninckx, S. Happaerts, & K. Van den Brande (Eds.), *Sustainable development and subnational governments: Policy-making and multi-level interactions* (pp. 1–24). Palgrave Macmillan UK.
- Howlett, M. (2019). *Designing public policies: Principles and instruments* (2nd ed.). Routledge. https://doi.org/10.4324/9781315232003
- Indset, M. (2023). When multilevel water management meets regional government: The differential impacts on administrative integration. *Environmental Politics*, 32(2), 271–293. https://doi.org/10.1080/09644016.2022.2066344
- Jain, M., Hoppe, T., & Bressers, H. (2017). A governance perspective on net zero energy building niche development in India: The case of New Delhi. *Energies*, 10(8), 1144. https://doi.org/10.3390/en10081144
- Jain, M., Siva, V., Hoppe, T., & Bressers, H. (2020). Assessing governance of low energy green building innovation in the building sector: Insights from Singapore and Delhi. *Energy Policy*, *145*, 111752. https://doi.org/10.1016/j.enpol.2020.111752
- Jordan, A. (2000). The politics of multilevel environmental governance: Subsidiarity and environmental policy in the European Union. *Environment and Planning A: Economy and Space*, 32(7), 1307–1324. https://doi.org/10.1068/a3211
- Jörgensen, K., Jogesh, A., & Mishra, A. (2015). Multi-level climate governance and the role of the subnational level. *Journal of Integrative Environmental Sciences*, 12(4), 267–283. https://doi.org/10.1080/1943815X.2015.1096797
- Knoepfel, P. (2007). *Environmental policy analyses: Learning from the past for the future—25 years of research*. Springer London.
- Kreiner, I., & Franco-García, M.-L. (2019). A strategic evaluation framework to assess the sustainability level of industrial parks in the post-global economy. In N. Yakovleva, R. Frei, & S. Rama Murthy (Eds.), *Sustainable development goals and sustainable supply chains in the post-global economy* (Vol. 7, pp. 205–224). Springer International Publishing. https://doi.org/10.1007/978-3-030-15066-2_11
- La Jeunesse, I., Bressers, H., & Browne, A. (2019). What could change drought governance in Europe? A comparative analysis between two case studies in France and the UK. In I. Jeunesse & C. Larrue (Eds.), *Facing hydrometeorological extreme events* (1st ed., pp. 301–311). Wiley. https://doi.org/10.1002/9781119383567.ch20
- Larrue, C., Bressers, N., & Bressers, H. (2016). Towards a drought policy in north-west European regions? In H. Bressers, N. Bressers, & C. Larrue (Eds.), *Governance for drought resilience* (pp. 245–256). Springer International Publishing. https://doi.org/10.1007/978-3-319-29671-5_13
- Latanna, M. D., Gunawan, B., Franco-García, M. L., & Bressers, H. (2023). Governance assessment of community-based waste reduction program in Makassar. *Sustainability*, *15*(19), 14371. https://doi.org/10.3390/su151914371
- Lordkipanidze, M., Bressers, H., & Lulofs, K. (2019). Governance assessment of a protected area: The case of the Alde Feanen National Park. *Journal of Environmental Planning and Management,*

- 62(4), 647-670. https://doi.org/10.1080/09640568.2018.1441014
- Lordkipanidze, M., Bressers, H., & Lulofs, K. (2020). Comparative assessment of water governance in protected areas. *Water*, *12*(3), 740. https://doi.org/10.3390/w12030740
- Maia, L., Kris, L., & Bressers, H. (2019). Towards a new model for the governance of the Weerribben-Wieden National Park. *Science of The Total Environment, 648*, 56–65. https://doi.org/10.1016/j.scitotenv.2018.08.121
- Mirnezami, S. J., De Boer, C., & Bagheri, A. (2020). Groundwater governance and implementing the conservation policy: The case study of Rafsanjan Plain in Iran. *Environment, Development and Sustainability*, 22(8), 8183–8210. https://doi.org/10.1007/s10668-019-00488-0
- Mirnezami, S. J., & Bagheri, A. (2017). Assessing the water governance system for groundwater conservation in Iran. *Iran-Water Resources Research*, *13*(2), 32–55.
- Nabavi, E. (2017). (Ground)water governance and legal development in Iran, 1906–2016. *Middle East Law and Governance*, 9(1), 43–70. https://doi.org/10.1163/18763375-00901005
- Noori, R., Maghrebi, M., Jessen, S., Bateni, S. M., Heggy, E., Javadi, S., Nouri, M., Pistre, S., Abolfathi, S., & AghaKouchak, A. (2023). *Decline in Iran's groundwater recharge*. https://doi.org/10.21203/rs.3.rs-2608948/v1
- Noori, R., Maghrebi, M., Mirchi, A., Tang, Q., Bhattarai, R., Sadegh, M., Noury, M., Torabi Haghighi, A., Kløve, B., & Madani, K. (2021). Anthropogenic depletion of Iran's aquifers. *Proceedings of the National Academy of Sciences, 118*(25), e2024221118. https://doi.org/10.1073/pnas.2024221118
- OECD. (2018). *OECD water governance indicator framework*. OECD Publishing. https://www.oecd.org/regional/OECD-Water-Governance-Indicator-Framework.pdf
- OECD. (2019a). *Governance as an SDG accelerator*. OECD Publishing. https://doi.org/10.1787/0666b085-en
- OECD. (2019b). *Policy coherence for sustainable development 2019*. OECD Publishing. https://doi.org/10.1787/a90f851f-en
- OECD. (2024). *Wastewater treatment*. OECD. https://www.oecd.org/en/data/indicators/wastewater-treatment.html
- Özerol, G., & Bressers, H. (2023). Enhancing the resilience of midsize cities to climate extremes: A tool for practitioners to assess their governance context. *Total Environment Research Themes*, *8*, 100080. https://doi.org/10.1016/j.totert.2023.100080
- Pacheco-Vega, R. (2015a). Gobernanza del agua residual en Aguascalientes: Captura regulatoria y arreglos institucionales complejos. *Región y Sociedad, 27*(64), 313–350.
- Pacheco-Vega, R. (2015b). Urban wastewater governance in Latin America. In I. Aguilar-Barajas, J. Mahlknecht, J. Kaledin, M. Kjellen, & A. Mejia-Betancourt (Eds.), *Water and cities in Latin America: Challenges for Latin America* (pp. 102–108). Earthscan/Taylor & Francis.
- Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. *Global Environmental Change, 19*(3), 354–365. https://doi.org/10.1016/j.gloenvcha.2009.06.001
- Pahl-Wostl, C., Holtz, G., Kastens, B., & Knieper, C. (2010). Analyzing complex water governance regimes: The management and transition framework. *Environmental Science & Policy*, 13(7), 571–581. https://doi.org/10.1016/j.envsci.2010.08.006
- Sievers, E., Canovas, I., Kristensen, D., & Hüesker, F. (2025). Assessing to act: A water-energy-food-ecosystem (WEFE) nexus governance assessment for the Inkomati-Usuthu river basin in South Africa. *Environmental Science & Policy, 164,* 103986. https://doi.org/10.1016/j.envsci.2025.103986
- Thiel, A., & Egerton, C. (2011). Re-scaling of resource governance as institutional change: The case of water governance in Portugal. *Journal of Environmental Planning and Management,*

- 54(3), 383-402. https://doi.org/10.1080/09640568.2010.507936
- Trein, P., Meyer, I., & Maggetti, M. (2019). The integration and coordination of public policies: A systematic comparative review. *Journal of Comparative Policy Analysis: Research and Practice*, 21(4), 332–349. https://doi.org/10.1080/13876988.2018.1496667
- Troeltzsch, J., Stein, U., Vidaurre, R., Bressers, H., Özerol, G., Furusho, C., & La Jeunesse, I. (2015). Regional governance assessment for drought adaptation in North-West Europe: Case study results from the analysis with a Governance Assessment Tool in the DROP-project. [Conference paper], 399–405. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941588373&partnerID=40&md5=ed62cd02096a62a1f74e33d41ccb9c80
- Tröltzsch, J. (2019). Multilevel governance for drought management in Flanders: Using a centralized and data driven approach. In I. Jeunesse & C. Larrue (Eds.), *Facing hydrometeorological extreme events* (1st ed., pp. 219–232). Wiley. https://doi.org/10.1002/9781119383567.ch15
- Tröltzsch, J., Vidaurre, R., Bressers, H., Browne, A., La Jeunesse, I., Lordkipanidze, M., Defloor, W., Maetens, W., & Cauwenberghs, K. (2016). Flanders: Regional organization of water and drought and using data as driver for change. In H. Bressers, N. Bressers, & C. Larrue (Eds.), *Governance for drought resilience* (pp. 139–158). Springer International Publishing. https://doi.org/10.1007/978-3-319-29671-5_7
- UNESCO. (2024). *United Nations world water development report 2024: Water for prosperity and peace.* United Nations Educational, Scientific and Cultural Organization (UNESCO).
- United Nations. (2021a). *The United Nations world water development report 2021: Valuing water.*United Nations.
- United Nations. (2021b). *UN-Water SDG 6 data portal: Mexico*. https://sdg6data.org/country-or-area/Mexico#anchor_6.b.1
- Van Rijswick, M., Edelenbos, J., Hellegers, P., Kok, M., & Kuks, S. (2014). Ten building blocks for sustainable water governance: An integrated method to assess the governance of water. *Water International*, *39*(5), 725–742. https://doi.org/10.1080/02508060.2014.951828
- Vikolainen, V., Flikweert, J., Bressers, H., & Lulofs, K. (2017). Governance context for coastal innovations in England: The case of sandscaping in North Norfolk. *Ocean & Coastal Management*, 145, 82–93. https://doi.org/10.1016/j.ocecoaman.2017.05.012