
Available online at: https://journals.researchsynergypress.com/index.php/lomr
Logistic and Operation Management Research (LOMR)

e-ISSN 2830-2680/p-ISSN 2830-3334
Volume 1 Number 2 (2022): 1-19

Corresponding author
khanissatya@gmail.com
https://doi.org/10.31098/lomr.v1i2.988 Universitas Islam Bandung & Research Synergy Foundation

Implementation of AHP & Knapsack for Better Process in Making
MicroStrategy Hypercard

Khanis S. Nugraha1, Indriati N. Bisono1, Hanijanto Soewandi2

1International Business Engineering Program, Universitas Kristen Petra, Surabaya, Indonesia

2MicroStrategy, Tysons Corner, VA, USA

Abstract

MicroStrategy Hypercard is a type of dashboard developed by MicroStrategy Business Intelligence
that has successfully implemented zero-click analytics. However, the authors of this paper have
found a weakness in the process of creating a MicroStrategy Hypercard. Specifically, the authors refer
to the process of loading Intelligent Cubes. The weakness that the authors found in this process are
that MicroStrategy Intelligent Cube loading capability is limited to RAM size on the user PC for data
storage combined with the loading of schema objects and handle caches where the user must input
all of these things manually. If the cubes' memory sizes exceed those of PC RAM, then the
MicroStrategy System will unload the cube from the last most interacted with even though this cube
needs to be made into Hypercard than other cubes. Therefore, we propose a two-stage resource
allocation problem for handling RAM allocation in loading Intelligent Cubes for creating
MicroStrategy Hypercard, with the first stage formulated as a multi-criteria problem that can be
solved using Analytic Hierarchy Process (AHP) and the second stage being multiple (several) 0-1
classic Knapsack problems with constraints obtained from the first stage. When calculated in parallel,
this method reduces computational complexity from O(nM) to O(1) (maxnjmaxMj). This method
could make the process of creating a Hypercard more user-friendly. We explain our recommendation
using a numerical example based on our experience.

Keywords: Business Intelligence Server; Analytic Hierarchy Process; Knapsack problem, MicroStrategy

Hypercard, MicroStrategy Intelligent Cube

This is an open access article under the CC-BY-NC license

INTRODUCTION

Nowadays, many companies around the world use data to run a business. Regardless of whether

the company is a small startup or a big enterprise, they use data to make important business

decisions, solve company-related problems, increase business performance, and understand the

market. Based on a survey made by Deloitte, 49% of respondents said analytics helps them make

better decisions, 16% say that it better enables key strategic initiatives, and 10% say it helps them

improve relationships with both customers and business partners (Panoho, 2019).

Based on the Deloitte survey, we can see that many companies need to use data to make business

decisions and key strategic initiatives. However, not all stakeholders within a company or

organization work in a data-related field (e.g., business analyst, data engineer, data scientist, data

architect); thus, it is important to give data insights with zero click analysis. Davis (2019) defines

zero click analysis as a type of data analytics where clean data with the work schema is coming to

https://doi.org/10.31098/lomr.v1i2.988

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

2 │

the user, and the user can interpret the data intuitively without the need for the user to be data

savvy.

One of the business intelligence tools that have successfully implemented zero click analysis is

MicroStrategy Business Intelligence with one of their solution called MicroStrategy Hypercard.

MicroStrategy Hypercard is a type of dashboard that shows pre-assigned data where the dashboard

would appear by moving the cursor of the user's PC into a pre-designated keyword in the user

search engine. Based on what we read in the survey made by Deloitte, we can say that the use of

MicroStrategy Hypercard is important for enterprises of today and enterprises of tomorrow.

The process of creating a MicroStrategy Hypercard begins with the process known as Extract,

Transform, and Load (ETL). Extract refers to extracting raw data that the user wants to use into

data management software (e.g., SQL). Transform refers to the process of transforming the raw data

into the data that we want to show in the hypercard. Load refers to the process of loading the

already transformed data into MicroStrategy Developer, which is a software that is used to create

a set of schema objects known as Facts (measures of interest, e.g., dividend, net profit, etc.) and

Attributes (grouping of data, e.g., product name, producer, dates, etc.) where these two schema

objects make up the MicroStrategy Project. Facts are then combined with aggregation

functions/other types of calculations, e.g., Sum, Avg, Min, Max, etc.) to create Metrics (e.g., Revenue,

Profit, etc.).

Once this process is completed, then the next step is to place together Attributes and Metrics to

create a report which will be converted to Intelligent Cube or Intelligent Cubes. The already made

Intelligent Cube or Intelligent Cubes must then be loaded to MicroStrategy Enterprise, which is

software for assigning keywords and creating Hypercard using the Intelligent Cube. It is to be noted

that one Intelligent Cube can only be used to make one Hypercard (the user cannot mix two

Intelligent Cubes into one Hypercard).

Finally, the user must connect the MicroStrategy Enterprise to the search Engine using a

MicroStrategy search engine extension. This is done so that the Hypercard or Hypercards could

appear when the user types the designated keyword and move the cursor of their pc to the

designated keyword once the search result is shown in the search engine. Below is an example of a

Hypercard with a "Sierra" as a designated keyword showing information such as CEO, Location, #

of employees, etc.

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 3

Figure 1. Example of MicroStrategy Hypercard

The problem that we encounter (which is a topic that is discussed in this paper) is in the second

process, particularly the process of RAM allocation of an intelligent cube. Within a real-life situation

of using MicroStrategy, to create a project user must allocate portions of the RAM for caches within

the Project (e.g., object cache, element cache, report & document caches). Furthermore, there could

be multiple projects within an I-Server, and each project could have multiple numbers of cubes

where each cube will have a different size of allocated RAM. RAM allocation must be done manually

by the user, which could be difficult given the circumstances of each project, as explained before,

especially for users with limited PC RAM size. The figures below give a clear picture of these

situations:

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

4 │

Figure 2 illustrates the process of RAM allocation for the

MicroStrategy Project that is usually done by a user in MicroStrategy. Note that the configuration

process is per Project, which means that the User must configure the project one by one. The things

that must be configured here are known as caches which consist of result caches and auxiliary

caches. The result cache is a cache of an executed report or document that is stored on the

Intelligence Server. The auxiliary cache is a cache that consists of results that are calculated and

processed for the first time and the value of attributes in the lookup table.

Figure 3 illustrates the process of RAM allocation for MicroStrategy Intelligent Cube (I-Cube). The

Maximum RAM usage here represents the total RAM allocated for Intelligent Cubes as a whole. The

default number of Maximum RAM usage is set to 256 MB and may be changed manually.

Figure 2. Project Caches RAM Allocation Figure 3. Intelligent Cube RAM Allocation

Figure 4. Example of I-Server Could Have Various Projects and Projects Could Have Many Cubes

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 5

Figure 4 depicts the fact that a single MicroStrategy BI Server may have several projects. Each of

these contains numerous Intelligent Cubes (2 Intelligent Cubes belong to the "Finance" project, 4 I-

Cube belongs to the "Human Resource Analysis" project, and 2 Intelligent Cubes belong to the

"Marketing" project). Furthermore, it is worth pointing out that each I-Cube can have its own RAM

usage size, and it can have different Statuses, namely: A = Active, F = File, and L = Loaded. Active

here means that the cube is ready to be used, loaded means that the cube is being used, and file

means that the cube is ins storage. There is also a "historic hit count" that represents how often a

particular cube has been used in the past.

Consider a user who has to manage this (MicroStrategy) BI Server. The user is given a computer (or

a group of computers if clustering is enabled) with a certain amount of memory (e.g., 18 GB, 64 GB,

or several TBs in a real large-scale implementation) on which to load multiple I-Cubes that are

grouped in multiple (MicroStrategy) Projects to serve many users (business analysts) so that they

can create their Hypercard/Hypercards. This is the issue we will look at in this study. The number

of projects in a MicroStrategy I-Server is often fewer than ten in real life. The number of Cubes, on

the other hand, might range from a few dozen to several hundred.

To solve this problem, we have found a solution by applying AHP and Knapsack as two-stage

resource allocation problems. Considering that the process of loading Intelligent Cubes may lead to

a situation in which some particular projects do not have any I-Cube loaded into the memory, which

indicates there is a limit to how many cubes we can load, we can use a 0-1 knapsack concept by

applying weight and value to the cubes. Similarly, loading all Intelligent Cubes from a particularly

important project may leave another project with very little (or even no) Intelligent Cubes being

loaded, which indicates that there are some projects that are more important compared to another

project. The reasoning of project importance is obtained from multiple criteria that need to be

considered; we can use the AHP concept to solve this problem. We believe that by using our method,

the process of creating a MicroStrategy Hypercard could be more user-friendly.

LITERATURE REVIEW

The Analytic Hierarchy Process (AHP) is a math and psychology-based approach for organizing and

evaluating complicated choices using a 1 to 9 scale representing score of priorities. It was created

in the 1970s by Thomas L. Saaty and has subsequently been improved (refer to Forman & Gass

2001 for an excellent review). It consists of three parts: the ultimate aim or problem to be solved,

all viable solutions (referred to as alternatives), and the criteria that will be used to evaluate the

alternatives. Because of AHP's ability to incorporate tangible as well as non-tangible factors,

especially where the subjective judgments of different individuals constitute an important part of

the decision making the users, the writers choose this method. Readers who are interested to learn

more about AHP can visit AHP Tutorial at https://people.revoledu.com/kardi/tutorial/AHP/

(Teknomo, 2006) since we skipped explaining in detail regarding AHP because there are already

numerous books and journal articles on this topic.

The Knapsack Problem is a famous Dynamic Programming Problem that falls in the combinatorial

optimization category. Knapsack problem works this way: Determine the quantity of each item

included in a collection given a set of objects, each with a weight and a value, so that the total weight

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

6 │

is less than or equal to a given limit and the total value is as large as possible (Pissinger, 2005). For

this paper, we will use the 0-1 knapsack where in this concept, the items are either completely or

no items are filled in a knapsack. This means that we cannot take part or fraction of items (for this

particular case, the items are Intelligent Cubes).

Regarding this paper, there are two stages; where the first stage is how to distribute RAM at the

Project level considering multiple factors using AHP, and then the second stage is how to distribute

RAM to load a certain set of Intelligent Cubes, which is using Knapsack. Intelligent Cube is a

collection of data that may be shared as a single in-memory copy among several reports made by

different users. Users can return sets of data from the data warehouse and save them straight to

Intelligence Server memory rather than returning data from the data warehouse for a single report.

This type of problem is commonly known as a two-stage resource allocation problem which is a

very well-known problem. However, despite the fact that several articles have been published on

the two-stage resource allocation problem, none of them are applicable to our situation because the

context of these papers is either different from ours or the method that they use is different (not

AHP and Knapsack).

The closest papers in terms of application that we can find are Singh & Dutta (2015) and Revathy

and Sekar (2018). In the first paper, they considered AHP to solve the multi-criteria nature of Cloud

Computing. However, their problem is just a simple single-stage selection of Cloud Computing

resources. The second one is equally interesting as they consider how to allocate Virtual Machines

(VMs) to a particular job considering multiple criteria. They also use AHP to find out a good balance.

But, again, the problem is just a single-stage resource allocation.

Olfati et al. (2018) use a two-stage problem with the combination of AHP and Linear Programming.

However, they take a different approach to the problem than we do. To acquire weight for the AHP

formulation, they proposed a two-stage Linear Programming problem.

On industrial application, Sharma & Dubey (2010) a paper that combined AHP and Knapsack to

solve industrial problems. Sharma & Dubey also considered a two-stage approach like ours.

However, their application is on carton sourcing. They use the weight obtained from AHP as the

coefficient of the constraint in the Knapsack problem. Ours is slightly different; we will use the

weight of the AHP to decide on the capacity of the knapsack. We will have to solve multiple knapsack

problems, while Sharma & Dubey only need to solve one.

The paper that is close to this paper in terms of context is a study done by Satya, K., Bisono, I. N.,

and Soewandi, H. (2022). They discuss the possibility of a two-stage memory allocation system

within MicroStrategy using AHP and Knapsack. Basically, they propose a concept of a RAM

allocation system for loading Intelligent Cubes within MicroStrategy so that the allocation of RAM

is ideal for loaded Intelligent Cubes within MicroStrategy and overall computer performance. Their

paper, however, does other possible uses of using their method (in this case, for creating

MicroStrategy Hypercard efficiently and in a user-friendly way).

Based on the method comparison of the other two-stage problem solving between AHP combined

with knapsack and other methods for this particular problem, we believe that our method is better.

For example, if we use linear programming combined with the AHP method, linear programming

has two weaknesses (Sherman,2020). First, given a specific objective and a set of constraints, it is

possible that the constraints may not be directly expressible as linear inequalities. Second, linear

programming is an advanced mathematical method to use that requires an understanding of

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 7

advanced mathematics. If we compare our method to the combination of AHP and lexicographic

goal programming, lexicographic goal programming has a weakness which is creating a decision in

the most economically efficient manner but does not imply equality or fairness (Romero,1991) even

though scholars still debate this weakness.

METHODOLOGY

Problem Formulation

To apply the solution that we proposed, the researchers will use data from the previous study about

the creation of an Intelligent Cube (please refer to Satya, K., Bisono, I. N. and Soewandi, H. (2022)).

Here, there are 30 I-Cubes organized into 5 MicroStrategy Projects, and call all these projects as

Project A, Project B, Project C, Project D, and Project E. Each of these projects has four to eight cubes

which we will call these cubes using codenames (e.g., A1, A2, A3). The Server system which manages

MicroStrategy I-Server has 32 GB of RAM, where user also needs to allocate:

• 2 GB for Object cache (across 5 projects) – see Figure 2 (red box),

• 2 GB for Element cache (across 5 projects) – see Figure 2 (red box),

• 4 GB for Report & Document caches (across 5 projects) – see Figure 2 (red box), and

• 8 GB for processing/calculation.

• 3.6 GB of RAM to load Schema Objects

By deducting the RAM that is needed to manage the I-Server with the RAM needed to handle caches,

processing, and loading then, he will need 12.4 GB to load some out of the 30 I-Cubes. Notice that

the sum of RAM for all 30 I-Cubes = 16053 MB > 12.4 GB. Hence, there is a need for optimization.

The majority of those controlling rules (particular caches) are project-specific, as seen in Figure 4.

(the green box indicates that it is per project). In Figure 4, the red box illustrates where the Object,

Element, and Report/Document (Result) caches may be configured, and the black box indicates

where the RAM allocation per project for I-Cubes can be configured. Also, the checkbox option

"Load Intelligent Cubes on startup" is not an option we wish to use because there is insufficient

RAM to load all Cubes, which will be solved using the two–stage allocation method.

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

8 │

Figure 4. MicroStrategy per Project Memory Allocation/Governing

Table 1. Thirty I-Cubes are grouped into 5 Projects

First Stage Problem (AHP)

The first stage starts with the creation of the AHP model, particularly finding criteria for the AHP

model. The object of focus here is the projects (in this case Project A to Project E) where the user

must find criteria for what the project is to be worked on first (the work here is loading cubes).

MicroStartegy Project Xij Size Hit Count MicroStartegy Project Xij Size Hit Count

XA1 408 271 XC6 278 315

XA2 694 385 XC7 462 255

XA3 625 475 XD1 708 66

XA4 360 431 XD2 707 224

XB1 412 23 XD3 500 325

XB2 951 273 XD4 714 269

XB3 639 30 XD5 628 49

XB4 667 393 XD6 393 252

XB5 811 181 XD7 370 467

XB6 870 258 XD8 581 180

XC1 566 157 XE1 324 328

XC2 398 331 XE2 444 455

XC3 580 12 XE3 357 318

XC4 526 125 XE4 326 125

XC5 383 171 XE5 371 155

Project A

Project B

Project C

Project C

Project D

Project E

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 9

There are many ways that users could do this depending on his/her situations, such as using

personal judgment, asking his/her supervisor, and asking an expert. However, for simplification

purpose, we will use the information provided by an expert from a data management company that

has used MicroStrategy. Based on the expert opinion, there are five criterions a project important

where these criteria are:

➢ Project deadline

➢ Number of users accessing the project

➢ Number of objects in a project

➢ Response time of report making

➢ Response time of overall computer performance

After finding the AHP criteria, users can now begin making the AHP model. To make this process

easier, the researchers of this paper suggest using an AHP model processing app, SuperDecisions.

The goal of the first stage problem is to find the local priority value, which is a score of priority in

the form of decimal numbers and a comparison of each criterion to another in terms of importance.

Three of these criteria, project deadline, the response time of report making, and the response time

of overall computer performance, are qualitative in nature. The other two criteria, namely the

number of users and the number of objects, are quantitative in nature. The AHP graph can be seen

in Figure 5 below.

Note that both quantitative criteria are supposed to be maximized. To do this, we can use the

AHPHybrid package in R. Using AHP, we can calculate 𝑤𝑖∀𝑖 = 1, … , 5 that satisfy ∑ 𝑤𝑖 = 15
𝑖=1 where

wi is the normalized weight for every project. A very simple RAM allocation can then be made by

multiplying 𝑤𝑖 with 12.4 GB.

Figure 5. Multi-criteria AHP Diagram for 1st Stage Problem

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

10 │

Second Stage Problem (0-1 Knapsack)

Once RAM allocation of projects is complete (the result of 1st stage problem), we can move on to

formulate a Knapsack problem to decide on which I-Cubes within a project to load as our 2nd stage

problem. Mathematically, for every project, we can write the problem as:

max ∑ 𝑝𝑗 𝑥𝑗
𝑛𝑖
𝑗=1

s. t. ∑ 𝑐𝑗𝑥𝑗 ≤ 𝑤𝑖𝑀
𝑛𝑖
𝑗=1

 (1)

where: 𝑥𝑗 ∈ {0,1}, pj is the (historical) hit count of I-Cube j, cj is the memory requirement of I-Cube

j, wi is the normalized weight for every project as the result of AHP, and M = 12.4 GB. Using the R

packages: adagio in R, we can solve this problem. Hit count is a Hit count' that refers to the number

of times the Intelligent Cube has been used. The hit count would increase every time the report gets

executed and hits the cache. Regarding the detailed usage of the adagio package in R, please refer

to https://cran.r-project.org/web/packages/adagio/adagio.pdf.

Figure 6. Intelligent Cube Hit Count

FINDINGS AND DISCUSSION

First-Stage AHP Result

Tables 2 and 3 describe the results of our scoring for qualitative subjects. Table 4 shows the

results for the other two quantitative criteria. Using the following formula, the quantitative

criteria can be simply translated into normalized weight:

𝑤𝑖 =
𝑥𝑖

∑ 𝑥𝑗
5
𝑗=1

 for maximization (2a)

or 𝑤𝑖 =
(∑ 𝑥𝑗

5
𝑗=1)−𝑥𝑖

∑ 𝑥𝑗
5
𝑗=1

 for minimization

 (2b)

https://cran.r-project.org/web/packages/adagio/adagio.pdf

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 11

where: 𝑥𝑖 is the value of quantitative value.

Table 2. Comparison Across Five Criterions

Table 3. Pairwise comparison across three qualitative criterions

Project Deadline Criteria Report Making

Criteria i Criteria J Criteria i Criteria J

Project A 4 Project B Project A 3 Project B

Project A 3 Project C Project A 6 Project C

Project A 4 Project D Project A 7 Project D

Project A 6 Project E Project A 2 Project E

Project B 7 Project C Project B 3 Project C

Project B 8 Project D Project B 4 Project D

Project B 3 Project E Project B 2 Project E

Project C 2 Project D Project C 2 Project D

Project C 5 Project E Project C 4 Project E

Project D 6 Project E Project D 5 Project E

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

12 │

Overall computer performance

Criteria i Criteria J

Project A 2 Project B

Project A 3 Project C

Project A 3 Project D

Project A 3 Project E

Project B 6 Project C

Project B 6 Project D

Project B 1 Project E

Project C 1 Project D

Project C 6 Project E

Project D 6 Project E

 Table 2 and Table 3 represent the comparison across five criteria and the pairwise

comparison across three qualitative criteria. The way to read the scores in both tables is by using

the principle of AHP scoring proposed by Thomas L. Saaty. If the number of the score is on criteria

i, then the score is in favor of criteria i (ex: Project A has demonstrated importance compared to

project E) and vice versa. Saaty gives details regarding the numbers of the score as these:

Table 4. Scoring of AHP According to Thomas L. Saaty

Table 5. Quantitative criteria for five projects (both are maximizing criteria)

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 13

Table 6. AHP Result for Criteria and Overall Project Ranking

Using the results in Table 6, we must now allocate available RAM among five separate projects, as

previously explained. Table 5's right side table shows the RAM distribution for each project. We

can simply solve the 5 Knapsack issues after the RAM for Intelligent Cube has been assigned to

each project. At this point, we'd like to point out to readers that the weight for each project listed

above may also be utilized to allocate RAM among five separate projects for caching the Object,

Element, and Report/Document (Result) - see Figure 2. Essentially, any resource allocation that

has to be dispersed among five separate projects may be accomplished using the weights listed

above.

Second Stage Knapsack Result

The formulation of the five knapsacks issue is quite simple. Table 6 was provided for the problem,

and the shaded blue area was given as the answer to each individual Knapsack problem. Please

keep in mind that this is the classic 0-1 Knapsack problem, not the 0-1 multiple knapsack

problem. We merely happened to use AHP to apply the limitations per project. However, the

advantage of this decomposition in terms of computing complexity is evident (in particular in

conjunction with parallel computation). The traditional 0-1 Knapsack problem has the complexity

O(nM) where n = 30 and M = 12698 (12.4 GB = 12698 MB) in our original example, after the

assignment of memory (RAM) across 5 different projects, the problem will reduce to O(n4M4)

where: n4 = 8 and M4 = 5499.

Project Number of users accessing project Number of objects in project

Project A 12 9

Project B 40 21

Project C 29 77

Project D 105 122

Project E 7 20

Criterion Weight Project Weight RAM (GB)

Project deadline 0.032 Project A 0.032 1.09

Number of users accessing the project 0.139 Project B 0.139 1.36

Number of objects in a project 0.046 Project C 0.046 3.78

Response time of report making 0.395 Project D 0.395 5.37

Response time of overall computer performance 0.388 Project E 0.388 0.79

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

14 │

Very keen readers will see that there is some RAM left over from Projects 3 and 4 since all I-Cubes

will only require 3193 + 4601 = 7794 MB, but we allot 3871 + 5499 = 9370 MB of RAM to Projects

3 and 4. Similarly, in Projects 1, 2, and 5, we have some unused RAM from the original assignment.

As a result, we may optimize further by dispersing the remaining RAM (= 131 + 87 + 678 + 898 +

41 = 1835 MB). At this point, we suggest solving another auxiliary Knapsack problem by merging

the remaining RAM and taking into account the hit count and memory of unassigned I-Cubes. As a

result, the auxiliary 0-1 Knapsack issue arises. Table 7 shows the issue formulation and answer

(in yellow).

Table 7. Five independent 0-1 Knapsack problems that can be solved in parallel

Table 8. The auxiliary 0-1 Knapsack problem

Following the resolution of the last auxiliary Knapsack problem, we have the following

assignment of I-Cubes that will be loaded from each Project, as shown in Table 8. The amount in

the last column (in red) may be used to fill the RAM governing in MicroStrategy BI Server, as

shown in Figure 4.

I-Cube XA1 XA2 XA3 XA4

Hit Count 271 385 475 431 To be Maximized

Memory 408 694 625 360 <=1116 MB

Project A

I-Cube XB1 XB2 XB3 XB4 XB5 XB6

Hit Count 23 273 30 393 181 258 To be Maximized

Memory 412 951 639 667 811 870 <=1393 MB

Project B

I-Cube XC1 XC2 XC3 XC4 XC5 XC6 XC7

Hit Count 157 331 12 125 171 315 255 To be Maximized

Memory 566 398 580 526 383 278 462 <=3871 MB

Project C

I-Cube XD1 XD2 XD3 XD4 XD5 XD6 XD7 XD8

Hit Count 66 224 325 269 49 252 467 180 To be Maximized

Memory 708 707 500 714 628 393 370 581 <=5499 MB

Project D

I-Cube XE1 XE2 XE3 XE4 XE5

Hit Count 328 455 318 125 155 To be Maximized

Memory 324 444 357 326 371 <=809 MB

Project E

I-Cube XA1 XA2 XB1 XB2 XB5 XB6 XE3 XE4 XE5

Hit Count 271 385 23 273 181 258 318 125 155 To be Maximized

Memory 408 694 412 951 811 870 357 326 371 <=1835 MB

BI Server

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 15

We will set the Intelligent Server to load 25 I-Cubes into memory while leaving the remaining 5 I-

Cubes active but not yet loaded into memory. As in Table 9, we can compare the final answer in

Table 8 to the initial single knapsack issue in Table 1.

Table 9. RAM Assignments for All 5 Projects

Creating MicroStrategy Hypercard from The Result of the Second Stage

The process of creating a MicroStrategy Hypercard based on the result of the second stage is quite

simple. First, the user must choose to load the intelligent cubes that have been chosen according

to the second stage knapsack result. Then, the user must connect their MicroStrategy Developer

environment to Microstrategy Workstation by using the URL of MicroStrategy Library or by a

MicroStrategy mstrc file. After the connection have been established, user can begin to make

MicroStrategy Hypercard according to their needs. Below is the step-by-step process of making

MicroStrategy Hypercard:

1. Open the Workstation window.

2. In the Navigation pane, click Create a New Card next to Cards (refer to the “+” icon next to

cards in the MicroStrategy Workstation.

3. Select an in-memory cube.

4. Click OK. The Card Editor appears.

5. On the Template tab, click Change Template to use one of the five-card templates (see

Figure 7). Regarding which type of hypercard the user should use, please look at Table 10

I-Cube XA1 XA2 XA3 XA4

Hit Count 271 385 475 431 Assigned RAM

Memory 408 694 625 360 2087 MB

Project A

I-Cube XB1 XB2 XB3 XB4 XB5 XB6

Hit Count 23 273 30 393 181 258 Assigned RAM

Memory 412 951 639 667 811 870 1306 MB

Project B

I-Cube XC1 XC2 XC3 XC4 XC5 XC6 XC7

Hit Count 157 331 12 125 171 315 255 Assigned RAM

Memory 566 398 580 526 383 278 462 3193 MB

Project C

I-Cube XD1 XD2 XD3 XD4 XD5 XD6 XD7 XD8

Hit Count 66 224 325 269 49 252 467 180 Assigned RAM

Memory 708 707 500 714 628 393 370 581 4601 MB

Project D

I-Cube XE1 XE2 XE3 XE4 XE5

Hit Count 328 455 318 125 155 Assigned RAM

Memory 324 444 357 326 371 1496 MB

Project E

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

16 │

6. On the Format tab, click the Header drop-down to customize your card's header.

Depending on the template you selected, other drop-down options are available to

customize.

7. On the Widgets panel, drag and drop List, Matrix, Ring, or Text Box widgets on your card.

To remove widgets, drag the widget off of the card. Please refer to Table 11 on widget

usage.

8. Drag the attribute you want to serve as the keyword attribute from the left pane to the

header of the card template. A star appears next to the chosen keyword attribute. The

header displays sample data using one data point from your attribute.

9. Use the icons in the header to add a link or a contextual link, clear content, set keyword

matching, or specify the display of attribute forms for titles and subtitles.

10. Add information to the card by dragging objects from the dataset to the card template.

You can change the order of information on the card by dragging a specific widget or list

item to a different location.

11. Click Save.

Figure 7. MicroStrategy Hypercard Variants

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 17

Table 10. Choosing MicroStrategy Hypercard by User Needs

Table 11. Widget Usage in Creating MicroStrategy Hypercard

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

18 │

Connecting MicroStrategy Hypercard to Search Engine

 The process of connecting Hypercard to a user search engine begins with downloading a

search engine extension called MicroStrategy Hyperintelligence. After that user must connect

their extension to the same environment as the MicroStrategy Developer. After this, there should

be an option to turn on the reaction of Hypercard in the extension based on the card title so that

when the user types the keyword of the hypercard/hypercards in their search engine, the

dashboard will appear.

CONCLUSION

Concluding Remarks

The purpose of this paper is to propose a user-friendly method for users, particularly business

analysts, data scientists, and data architects, to create MicroStrategy Hypercard by applying a two-

stage problem-solving solution using AHP and knapsack. Based on the result in chapter four, the

researchers have successfully demonstrated a possibility of a two-stage approach to manage RAM

allocation across several different projects in a (MicroStrategy) Business Intelligent Server that

incorporates several criteria (both qualitative and quantitative).

The first stage of the RAM allocation is to create the AHP model of each project and create a

prioritization criterion. The solution to the first stage multi-criterion problem is also important

since it may be used to allocate RAM for Object, Element, and Result caches (not just limited to I-

Cubes that are loaded when Intelligent Server starts).

The second stage is to create a knapsack model for prioritizing the cube/cubes that need to be

loaded. A second-stage solution employing Knapsack becomes significantly simpler in terms of

computing complexity once the issue is divided into several phases, the first of which is cube

allocation based on AHP results and the second of which is loading the remaining cubes depending

on available RAM space.

After the two-stage process is done, the complete user could continue the process of loading the

intelligent cubes and connect it to the MicroStrategy Enterprise so that users can continue the

process of making a hypercard and utilize it in their search engine.

Limitation & Further Research

Some researchers are against the use of AHP (and its pairwise comparison), especially when it

comes to quantitative criteria (see: Barzilai 1998, Saari & Sieberg 2004, Rezaii 2015, etc. It does,

however, have a lot of supporters (see: Whitaker 2007). We are not going to support one side over

the other. Our method is sufficiently broad, and if required, the AHP might be replaced by any other

multi-criteria methodology (e.g., McCaffrey 2009, etc.). Nonetheless, we picked AHP to present

since it is still one of the most frequent methodologies for multi-criteria issue resolution, and we

wanted to emphasize our perspective on the scenario at hand.

In this work, we also neglected to account for the stochastic nature of demand. In reality, the

settings should allow I-Cubes to extend within a specific percentage. As a result, the constraint

parameter of the knapsack problem is a random variable. This might provide a new perspective on

the system and serve as the subject of future study.

Logistic and Operation Management Research (LOMR), Vol.1 (2), 1-19

Implementation of AHP & Knapsack for Better Process in Making MicroStrategy Hypercard
Khanis S. Nugraha, Indriati N. Bisono, Hanijanto Soewandi

│ 19

REFERENCES

Barzilai, J., 1998. On the decomposition of value functions. Operations Research Letters, 22(4-5),

pp.159-170.

Chandran, B., Golden, B. and Wasil, E., 2005. Linear programming models for estimating weights in

the analytic hierarchy process. Computers & Operations Research, 32(9), pp.2235-2254.

Davis, R., 2019. How 'zero-click analytics' will empower enterprise-wide data adoption.

TechNative.io

Forman, E.H. and Gass, S.I., 2001. The analytic hierarchy process—an exposition. Operations

research, 49(4), pp.469-486

McCaffrey, J.D., 2009, April. Using the Multi-Attribute Global Inference of Quality (MAGIQ)

technique for software testing. In 2009 Sixth International Conference on Information Technology:

New Generations (pp. 738-742). IEEE.

Panoho, K., 2019. Council post: The age of analytics and the importance of data quality. Forbes.com

Patel, G., Mjema, G.D. and Godwin, K.M., 2016. Linear programming models for estimating weights

in analytic hierarchy process and for optimization of human resource allocation. International

Journal of the Analytic Hierarchy Process, 8(2).

Paydar, M.M. and Olfati, M., 2018. Designing and solving a reverse logistics network for

polyethylene terephthalate bottles. Journal of cleaner production, 195, pp.605-617.

Pisinger, D., 2005. Where are the hard knapsack problems? Computers & Operations Research,

32(9), pp.2271–2284.

Revathy, C. and Sekar, G., 2018. Analytic hierarchy process for resource allocation in cloud

environment. Journal of Cyber Security and Mobility, pp.25-38.

Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega, 53, pp.49-57.

Romero, C., 1991. Handbook of Critical Issues in goal programming, Pergamon Press.

Saari, D.G. and Sieberg, K.K., 2004. Are partwise comparisons reliable?. Research in Engineering

Design, 15(1), pp.62-71.

Satya, K., Bisono, I. N., & Soewandi, H. (2022). Two-Stage Memory Allocation using AHP &

Knapsack at PT Berca Hardayaperkasa. RSF Conference Series: Business, Management and Social

Sciences, 2(1), 231–241. https://doi.org/10.31098/bmss.v2i1.539

Sharma, S. and Dubey, D., 2010. Multiple sourcing decisions using integrated AHP and knapsack

model: a case on carton sourcing. The International Journal of Advanced Manufacturing

Technology, 51(9), pp.1171-1178.

Sherman, F., 2020. The disadvantages of Linear Programming. Sciencing. Available at:

https://sciencing.com/info-12195571-disadvantages-linear-programming.html [Accessed July 4,

2022].

Singh, A. and Dutta, K., 2015. Apply AHP for resource allocation problem in the cloud. Journal of

Computer and Communications, 3(10), p.13.

Teknomo, K., 2006. Analytic hierarchy process (AHP) tutorial. Revoledu. com, 6(4), pp.1-20

Whitaker, R., 2007. Criticisms of the Analytic Hierarchy Process: Why they often make no

sense. Mathematical and Computer Modelling, 46(7-8), pp.948-961.

